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Path resolution for nested recursive modules

Jacques Garrigue · Keiko Nakata

Abstract The ML module system facilitates the modular development of large programs,
through decomposition, abstraction and reuse. To increase its flexibility, a lot of work has
been devoted to extending it with recursion, which is currently prohibited. The introduction
of recursion adds expressivity to the module system. However it also creates problems that
a non-recursive module system does not have.

In this paper, we address one such problem, namely resolution of path references. Paths
are how one refers to nested modules in ML. Without recursion, well-typedness guarantees
termination of path resolution, in other words, we can statically determine the module that a
path refers to. This does not always hold with recursive module extensions, since the module
system then can encode a lambda-calculus with recursion, whose termination is undecidable
regardless of well-typedness. We formalize this problem of path resolution by means of a
rewrite system on paths and prove that the problem is undecidable even without higher-order
functors, via an encoding of the Turing machine into a calculus with just recursive modules,
first-order functors, and nesting. Motivated by this result, we introduce a further restriction
on first-order functors, limiting polymorphism on functor parameters by requiring signatures
for functor parameters to be non-recursive, and show that this restriction is decidable and
admits terminating path resolution.

Keywords The ML module system · Recursive modules · Ground term rewriting ·
Decidability · Termination

1 Introduction

Modularity is an important factor in the smooth development and maintenance of large pro-
grams. Many modern programming languages have mechanisms to support modular devel-
opment of programs. Among such mechanisms, the ML module system is well-known for
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its strong support of program structuring [21,18]. Two of its important features are nested
structures and functors. ML modules are nestable, that is, a module can contain submodules,
as well as type and value definitions; nesting is a simple but powerful way to organize pro-
gram codes and namespaces hierarchically. ML supports functions on modules, so-called
functors, which facilitate code reuse in a modular way.

Despite this flexibility, ML prohibits recursion between modules. That is to say, re-
cursive type or function definitions may not cross module boundaries. As a result of this
constraint, programmers may have to consolidate conceptually separate components into a
single module, intruding on modular programming [29]. The absence of recursive modules
also hinders extensible program development [25].

Introducing recursive modules is a natural way out of this predicament. Recursion is a
powerful language construct, hence its addition certainly increases the expressivity of the
module system. At the same time the addition might jeopardize the static guarantees on
safety that current ML enjoys, such as decidable type checking or error-free module initial-
ization. Indeed, extending ML with recursive modules poses non-trivial problems and a lot
of work has been devoted to investigate extensions that retain desirable safety guarantees
while not introducing too many constraints [2,29,6,1,12,5].

In our previous work [25], we have studied an applicative module system [16] with
polymorphic functors and recursion based on paths. Whereas several different approaches
to accounting for ML-style modules have been proposed [21,30,17,11,9], we found a path-
based approach natural from the programmer’s viewpoint. One problem we encountered is
resolution of path references. Paths, also known as qualified identifiers, are the way ML
refers to nested modules and their contents. In the absence of recursive modules, success
of path resolution is guaranteed via type checking, which in turn ensures that the runtime
will find the module that the path refers to. Technically this is akin to the strong normal-
ization property enjoyed by the simply typed lambda calculus. However this property does
not hold once recursion is introduced, since the module system can then encode a lambda
calculus with recursion, whose termination is undecidable regardless of well-typedness. The
possibility for divergence during path resolution impacts safety. Type checking may not ter-
minate, since determining type equality would require path resolution. For instance, the type
checker of OCaml diverges on the following program:

module type M = sig

module rec F : functor(X : sig type t end) → sig type t = F(F(X)).t end

end

Furthermore, resolving path references in order to prepare code for execution may diverge,
which would contradict phase distinction [11].

In this paper, we examine and address the problem of path resolution. We formalize path
resolution by defining a rewrite system on paths (Section 3 and 4). Then we prove that termi-
nation of path resolution is undecidable even without higher-order functors, via an encoding
of any Turing machine into a calculus with just recursive modules, first-order functors, and
nesting (Section 5). The result is interesting since it attests to the expressivity of nested
structures, which are a distinguishing feature of ML modules but often receive less attention
than functors. This result, together with the observations on decidable subsystems given in
Section 5.1, lead us to a further restriction on first-order functors, by requiring signatures
for functor parameters to be non-recursive. In Section 6, we formalize this restriction and
show that path resolution is terminating when the restriction is enforced. We then develop a
terminating algorithm which verifies that the restriction holds and that there are no dangling
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or diverging paths. These two technical results, namely proof of the undecidability of a first-
order subsystem and introduction of a decidable restriction, are the main contributions of
this paper.

2 Background

In our previous work [25], we studied a type system for recursive ML-style modules with
applicative functors, which we named Traviata. In this section we give an overview of this
type system, which motivates our study of path resolution in this paper.

The module system of OCaml [20] adopts applicative functors [16] and has been ex-
tended with recursive modules [19]. The type system of Traviata is very much inspired by
that of OCaml. In particular it features both applicative functors and recursive modules. In-
deed, we worked on Traviata to address deficiencies of OCaml’s applicative functors, and
to formally study the use of “paths” as central concept for an extension of the applicative
module system with recursion.

The key extension1 we made for Traviata, in comparison to OCaml, is that the signa-
ture language keeps an account of module abbreviations and that module path equality is
determined in terms of which modules the paths refer to, instead of syntactically comparing
those paths. Below we elaborate on these points.

Consider the following module definitions (written in OCaml-like syntax):

module Int = struct type t = Int of int end

module I = Int

In Traviata, Int and I have the following signatures respectively:

module Int : sig type t = Int of int end

module I : Int

In the above signature, “module I : Int” expresses both an equivalence between paths (I is
equivalent to Int) and signatures (I has the same signature as Int).

The main reason for strengthening path equality is to circumvent a source of incomplete-
ness in OCaml’s applicative functors, which arises from the fact that the type system does
not record module abbreviations, but only keeps track of (core) type equalities introduced
by those abbreviations. For instance consider the following program:

module F =
functor(X : sig type t end) → struct type t = A of X.t end

module AofInt1 = F(Int)
module AofInt2 = F(Int)
module AofInt3 = F(I)

The two types Int.t and I.t are equivalent thanks to type strengthening [16]. Functors being
applicative, AofInt1.t and AofInt2.t are equivalent too. However, the two types AofInt1.t

and AofInt3.t are not equivalent in OCaml, because equality on module paths is purely
syntactic, and as a result does not take into account the fact that I is an abbreviation for Int.

1 In Traviata, structures as well as signatures for structures are also extended with declarations of self
variables, or recursion variables. That extension is not essential with respect to OCaml, but rather a design
choice at the level of the surface syntax, which facilitates the formal study.
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This kind of incompatibility is counter-intuitive. Indeed, the type system already keeps track
of (core) type abbreviations and unfolds them when necessary. Thus from the programmer’s
viewpoint type abbreviations are just a notational convenience and do not affect typability;
why should module abbreviations be any different? This deficiency of OCaml’s type system
was addressed in Traviata. The idea is simple: we extend the type system to keep track of
module abbreviations too. As a result AofInt1.t and AofInt3.t are equivalent in Traviata,
since I is unfolded to Int. As seen above, this is handled by allowing module paths inside
signatures; in the above case, the signature of I is Int, allowing us to recover the path equality
from the signature alone. This is also true for functors. For instance, the functor

module Id = functor (X : sig end) → X

will be given the signature

module Id : functor (X : sig end) → X

meaning that it fully implements identity: for any module M, Id(M) will be equivalent to
M. This is not the case in OCaml or Standard ML, where a module variable only stands
for the components explicitly included in its signature (i.e. the signature of Id would be the
useless functor (X : sig end) → sig end), but this comes naturally if we track abbreviations
of modules. We can of course obtain the weaker type in Traviata too, by ascribing the body
of the functor with an opaque signature. Note also that this polymorphism (but not the type
equality) can be simulated in OCaml by using an abstract signature:

module Id : functor (X : sig module type S module M : S end) → X.S
= functor (X : sig module type S module M : S end) → X.M

Like in system F, this functor can be applied to a module containing any signature S and
any module M satisfying S, and returns M itself. This is less flexible than what we propose,
since abstract signatures can only be completely abstract, while in our approach we could
give a more precise signature to X , allowing access to its components in the body of Id. We
still think that, at least in the absence of recursive modules, it should be possible to encode
Traviata’s polymorphism using abstract signatures, so that this difference is more a question
of flexibility than expressivity.

The strengthened module path equality is all the more necessary once recursion is in-
troduced. Since the same module may be accessed through different recursion variables, we
can no longer rely on the unicity of syntactic paths.

module L = struct (Z)
module M = struct (Z′)
module N = struct type t = Int of int end

end

end

In the above example, Z and Z′ are recursion variables as in Moscow ML [29]. Given the
functor F defined earlier, one would expect the type equality F(Z.M.N).t = F(Z′.N).t to hold
inside N for the very reason that Z.M.N and Z′.N refer to the same module. Note that inside
N both Z and Z′ are in scope. This shows how weak syntactic module path equality is in the
presence of recursion.
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module TreeForest =

functor(X : sig type t val compare : t → t → bool end) →
struct (TF)

module S = Set.Make(X)

module Tree = struct

module F = TF.Forest

type t = Leaf of X.t | Node of X.t * F.t

let split = λx.case x of Leaf i ⇒ [Leaf i]

| Node (i, f) ⇒ (Leaf i) :: f

let labels = λx.case x of Leaf i ⇒ TF.S.singleton i

| Node (i, f) ⇒ TF.S.add i (F.labels f)

end

module Forest = struct

module T = TF.Tree

type t = T.t list

let sweep = λx.case x of [] ⇒ []

| (T.Leaf y) :: tl ⇒ (T.Leaf y) :: (sweep tl)

| (T.Node y) :: tl ⇒ sweep tl

let labels = λx.case x of [] ⇒ TF.S.empty

| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

let incr = λ f.λ t.let l1 = labels f in

let l2 = T.labels t in

if TF.S.diff l1 l2 != TF.S.empty then (t :: f) else f

end

end

Fig. 1 Trees and Forest

The strengthened module path equality also fixes another source of incompleteness in
OCaml’s applicative functors, in that the type system cannot establish some type equalities
that hold with generative functors 2. Below is an example of this incompleteness.

module M = struct

module N = struct type t = int let compare x y = x− y end

module S = Set.Make(N)
let empty = S.empty

end

module M′ = M

let = M′.empty = M.empty

The last line does not type check in OCaml since M′.empty has type MakeSet(M′.N).t,
whereas M.empty has type MakeSet(M.N).t. It type checks in Traviata: the module path
equality between M′ and M is kept in the signature, from which it follows that M′.N and
M.N refer to the same module.

In Figure 1 we give a typical use of recursive modules: Tree and Forest refer to each
other recursively, defining recursive data types and functions on them that cross module
boundaries. The module TreeForest is given the signature in Figure 2, keeping module path

2 This problem alone could be fixed by adapting Dreyer’s proposal [7]. But as motivated by the earlier
examples, we believe our approach is more robust in the presence of recursion.
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module TreeForest :

functor(X : sig type t val compare : t → t → bool end) →
struct (TF)

module S : Set.Make(X)

module Tree : sig

module F : TF.Forest

type t = Leaf of X.t | Node of X.t * F.t

val split : t → F.t

val labels : t → S.t

end

module Forest : sig

module T : TF.Tree

type t = T.t list

val sweep : t → t

val labels : t → S.t

val incr : t → t

end

end

Fig. 2 Signature of TreeForest

Expressions e ::= {m1 = e1 · · ·mn = en} | λ (x)e | p
Paths p,q ::= ε | x | p.m | p1(p2)
Program P ::= {m1 = e1 · · ·mn = en}

Fig. 3 Syntax

equalities between S and MakeSet(S), F and TF.Forest, and T and TF.Tree. These equiva-
lences are necessary to type check TreeForest.

As we have shown, the equivalence of nominal types can be decided using our strength-
ened module path equality: given two module paths p and q and a type name t, the types p.t
and q.t are equivalent if and only if p and q are equal. Handling equality at the module level
leads to some simplifications, for instance it avoids the need for type strengthening (i.e. the
addition of equations at the type level). This equality is strong. For instance p.M and q.M
are equal if p is an abbreviation of q and q has a submodule named M. Moreover, F(M) and
M are equal if F is an identity functor. Path normalization is a natural way to check module
equality, as normal paths can be compared syntactically. For type checking to be decidable,
path normalization must be terminating, which is the subject of study in this paper.

3 Syntax

In Figure 3 we define a small record calculus for our formal study. We use m as a metavari-
able for field names of records and x for variables.

An expression, ranged over by e, is either a structure, a functor or a path. A structure
{m1 = e1 · · ·mn = en} is a sequence of bindings, or a record of expressions ei labeled with
names mi. A functor λ (x)e represents a function on expressions; x is the name of the formal
parameter and e is the body, in which x is bound.
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Paths (ranged over by p and q) are the most interesting construct of the calculus. They
are built from 1) the root path ε , which refers to the toplevel structure; 2) variables x; 3)
the dot notation “p.m”, representing access to the field named m of the structure that p
refers to; and 4) functor application p1(p2), which applies the expression that p1 refers to
to the expression that p2 refers to. As we shall see in an example later, a path can refer to a
field at any level of nesting within the toplevel structure regardless of field ordering. Thus
paths introduce recursion into the calculus. We may call a binding m = p in a structure an
abbreviation binding3.

A program, ranged over by P, is a (toplevel) structure. All occurrences of the root path
ε in a program are considered to refer to the toplevel structure.

We assume the following two conventions: 1) No sequences of bindings in a structure
bind the same name twice; 2) No programs contain free variables, where free occurrence of
variables is defined in the standard way.

The calculus is kept small so as to focus on the core technical issues studied in the paper.
It is meant to be an abstraction of the signature language of Traviata: expressions actually
represent signatures and a program corresponds to the signature of a toplevel structure. In
order to relate to the intuition of path reduction, the syntax we chose for this formal calculus
is different. When translating a Traviata recursive signature into a structure of this calculus,
one just has to replace all self references with paths starting from ε , applying the following
conversion to the whole recursive signature:

[[S]] = [[S]]εid
[[sig(Z) module M1 : S1 . . . module Mn : Sn end]]p

σ
= {M1 = [[S1]]

p.M1
σ [Z 7→p] . . .Mn = [[Sn]]

p.Mn
σ [Z 7→p]}

[[functor (X : S1) → S2]]
p
σ = λ (X)[[S2]]

p(X)
σ

[[q]]p
σ = σ(q)

Note that we drop the annotations on functor arguments. It may seem that in doing so
we are changing the nature of the problem studied. One first remark is that, in Traviata,
annotations on functor arguments can be omitted, relying on type inference to reconstruct
them. So this calculus could be seen as a model of signature inference for Traviata programs
without annotations.

But the deeper reason for starting with such an untyped calculus, is that we do not
want to fix a specific type system too early on. We will see that our undecidability result in
Section 5 is still valid in presence of some kind of type system for functor arguments. In
Section 6 we will introduce another form of type system to recover decidability. This in turn
should help us in designing a surface language with a powerful yet decidable type system.
We will discuss this surface language in Section 6.4.

4 Semantics

Path resolution rewrites paths into source form. Until we formally define it later, source form
can be explained as a normal form with no dangling references.

To provide some intuition for path resolution, let us consider the following program:

{ m1 = {n1 = {n = {}} n2 = ε.m1.n1 }
m2 = λx.{n1 = {} n2 = x.n2 n3 = ε.m2(x).n1 }
m3 = ε.m2(ε.m1).n2 }

3 The general form of an abbreviation binding for p is m = λ (x1) . . .λ (xn)p.
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The path ε.m1.n1 refers to the field n1 of the structure m1. Hence, the path ε.m1.n2, which
is an abbreviation for ε.m1.n1, refers to the field n1 of the structure m1, too; we say that ε.m1.n1
is the source form of ε.m1.n2. A path can contain functor applications. For instance, the path
ε.m2(x).n1 refers to the field n1 of the body of the functor m2. We may need to perform
computation to resolve path references. For instance the path ε.m2(ε.m1).n2 resolves to the
source form ε.m1.n1; by reducing the functor application, we obtain ε.m1.n2, which resolves
to ε.m1.n1, as we have explained above. Besides, paths may contain dangling references. For
instance the path ε.m1.n3 is dangling since the structure m1 does not contain a field named
n3.

In this section, we formalize path resolution by defining a rewrite system on paths. The
intuition is straightforward. Continuing the above example, we extract the following four
rewrite rules from it, by collecting abbreviation bindings:

{ ε.m1.n2 → ε.m1.n1, ε.m2(x).n2 → x.n2,
ε.m2(x).n3 → ε.m2(x).n1, ε.m3 → ε.m2(ε.m1).n2 }

According to these rules, we can induce the reduction steps

ε.m3 → ε.m2(ε.m1).n2 → ε.m1.n2 → ε.m1.n1

which reflect the previous informal explanation of path resolution for ε.m2(ε.m1).n2.

4.1 Terminology

We first introduce some basic terminology and useful notation for our formalization.
For a path p, we write args(p) to denote the set of paths that occur within p in functor

argument positions, or:

args(ε) = /0 args(x) = /0
args(p.m) = args(p) args(p1(p2)) = {p2}∪args(p1)

A path p is ground if p does not contain variables.

Substitutions, ranged over by θ , are finite mappings from variables to paths. We write
dom(θ) to denote the domain of θ . Application of a substitution θ to a path p, written θ̂(p),
is defined by:

θ̂(ε) = ε θ̂(x) =
{

x when x 6∈ dom(θ)
p when x ∈ dom(θ) and θ(x) = p

θ̂(p.m) = θ̂(p).m θ̂(p1(p2)) = θ̂(p1)(θ̂(p2))

We write θ [x 7→ p] to denote a mapping extension. Precisely,

θ [x 7→ p](x′) =
{

p when x′ = x.
θ(x′) when x′ 6= x

We write id to denote an identity mapping. In the rest of this paper we write θ(p) for θ̂(p).

Path contexts, ranged over by C[], are defined by:

C[] ::= [·] |C[].m |C[](p) | p(C[])

where [·] denotes the empty context. We write C[p] to denote the path obtained by placing p
in the hole of the context C[].
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Rules(p,{m1 = e1 . . .mn = en}) =
∪n

i=1 Rules(p.mi,ei)
Rules(p,λ (x)e) = Rules(p(x),e)
Rules(p, p′) = {p → p′}

Fig. 4 Path rewrite rules of a program

A path rewrite rule is a pair (p, p′) of paths. It will be written p → p′. A path rewrite
system R is a set of path rewrite rules {p1 → p′1, . . . , pn → p′n}. A path p rewrites into p′ in
one step with respect to R if there is a substitution θ , a path context C[] and a rewrite rule
pi → p′i ∈ R such that p = C[θ(pi)] and p′ = C[θ(p′i)]. We write p →R p′ when p rewrites
into p′ in one step with respect to R and p ∗→R p′ when p rewrites into p′ in zero or more
steps with respect to R, that is, ∗→R is the reflexive and transitive closure of →R. We may
omit the subscript R when it is clear from the context. A path p is in normal form with
respect to R if there is no q such that p →R q. A path q is a normal form of p with respect to
R if p ∗→R q and q is in normal form with respect to R.

It may help to consider paths represented in a style closer to term rewriting. For instance,
we could represent a path ε.m1.m2(ε.m3)(x).m4 as m4(app(app(m2(m1(ε)),m3(ε)),x)), where
both ε and variables are of arity 0, names are of arity 1, and we have introduced a new
function symbol app of arity 2.

4.2 Program evaluation

Given any path p, we evaluate p with respect to a program P in the following two steps.
First the path p is rewritten into normal form with respect to the path rewrite system corre-
sponding to P. Second the normal form is guaranteed to be in source form by making certain
that it contains no dangling references. Below we formalize these steps in turn.

4.2.1 Path rewrite system of a program

In Figure 4, we define a function Rules for building a path rewrite system from a program.
The functionality of Rules is straightforward. It traverses a program from the toplevel struc-
ture, collecting abbreviation bindings, as we have informally explained above. The first ar-
gument, a path, keeps track of the location of the second argument, an expression that Rules
is currently examining. The path is extended with .m when Rules takes up a field named m
(the first case), and with functor application when it enters the body of a functor (the second
case). When encountering an abbreviation binding m = p at the location tracked as p′, Rules
introduces a path rewrite rule p′.m → p (the last case).

We use the shorthand RulesP for Rules(ε,P) and call it the path rewrite system of P.
It is important to notice that RulesP contains no overlapping rules for any P. According

to the conventions of Section 3, the module names m1, . . . ,mn of the first case are pairwise
distinct. As a result, the rewriting system is confluent. This is natural as we are considering
a deterministic programming language, ML.

Definition 1 A path p is a normal form of q with respect to a program P if p is a normal
form of q with respect to RulesP.
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P ` ε 7→ (id,P)
P ` p 7→ (θ ,{. . . m = e . . .})

P ` p.m 7→ (θ ,e)
P ` p1 7→ (θ ,λ (x)e)

P ` p1(p2) 7→ (θ [x 7→ p2],e)

Fig. 5 Lookup

4.2.2 Lookup

A program P can be regarded as a lookup table from paths to expressions, provided that the
input paths are in an appropriate form. For instance, the example of this section would map
the path ε.m1.n2 to ε.m1.n1 and the path ε.m2(x).n1 to {}, but would fail for the path ε.m1.n3
or ε.m1.n2.n; the former is dangling and the latter needs to be rewritten into ε.m1.n1.n first.

We formalize this view of a program as a lookup table by defining the lookup relation
in Figure 5. Arguments are accounted for by building a substitution from formal parameters
(in the source program) to actual arguments (in the path looked up). The judgment P ` p 7→
(θ ,e) means that, with respect to the program P, the path p refers to the expression e, where
variables x appearing in e are bound to θ(x). Observe that the relation is decidable and
deterministic for any program P and path p. In other words, given P and p, we can search in
a terminating way e and θ such that P ` p 7→ (θ ,e) holds and they are unique if they exist.

We write P ` p 67→ when P ` p 7→ (θ ,e) does not hold for any (θ ,e).
Finally, we use the lookup relation to define the notion of source form. A path p is in

source form if every path contained in p refers to a structure or a functor.

Definition 2 A path p is in source form with respect to a program P if the following two
conditions hold.

1. There exists a pair (θ ,e) such that P ` p 7→ (θ ,e) holds, and e is not a path.
2. For any q in args(p), q is in source form with respect to P.

Since the lookup relation is decidable, we can determine, for any program P and path
p, whether p is in source form with respect to P; this is easily proved by induction on the
structure of p.

We end this section with a formal definition of the evaluation of paths.

Definition 3 A path p evaluates into q with respect to a program P if p rewrites into a
normal form q and q is in source form with respect to P.

5 Undecidability

We are interested in the decidability of path evaluation. In other words, given a path p and
a “program” P (which actually encodes a recursive signature), we want to evaluate p with
respect to P in a terminating way and signal an error when p contains cyclic or dangling
references. This problem is clearly undecidable if we include both higher-order functors
and recursion, as it then amounts to determining termination of normalization for a lambda
calculus with (unrestricted) recursion.

In this section, we prove that termination remains undecidable with only first-order func-
tors and nested modules, i.e., without higher-order functors. The restricted calculus is much
less powerful than a lambda calculus with recursion. Indeed, systems with respectively only
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recursive first-order functors (without nested modules) and only nested recursive modules
(without functors) have decidable termination. Below we first look at these systems.

5.1 Decidability of subsystems

In the absence of nested modules, since our rewriting rules do not depend on arguments,
non-terminating programs are exactly those containing effective recursion. By effective
recursion, we mean that a recursive occurrence of a module or functor is called dynam-
ically with the same number of arguments as in its definition, or more. Here we allow
functors to return functors, but they should not be passed as argument. For instance both
{m1 = λ (x)ε.m2 m2 = ε.m1(ε.m3)} and {m2 = ε.m1(ε.m2)} do not terminate on path ε.m2,
while {m1 = λ (x)ε.m1} and {m1 = λ (x)ε.m2(x) m2 = λ (x)x} always terminate. In order
to decide termination, we build a non-deterministic pushdown automaton. Its states are
the names of the modules and functors, and it has only one stack symbol. The length of
the stack tells us the number of arguments we have. Our first example gets encoded as
{(m1,n+1) → (m2,n),(m2,n) → (m1,n+1),(m2,n) → (m3,n)}. We then check whether this
pushdown automaton may have infinite transitions starting from a finite stack, which is a
decidable problem (this is a direct consequence of the pumping lemma for context free
languages, which are equivalent to pushdown automata [13].) Here we see that there is a
transition from (m1,1) to (m1,1), so there is a non-terminating path.

For the case with only nested modules, since there are no functors, there are no vari-
ables, and termination is clearly decidable. Indeed if a program P does not contain functors
at all, every path rewrite rule in RulesP is of the form ε.m1.m2. · · · .mi → ε.m′

1.m
′
2. · · · .m′

j.
We can then encode our program as a deterministic pushdown automaton with a single state,
using names as stack alphabet, each rule defining a transition. Termination becomes equiv-
alent to whether this pushdown automaton can generate infinite words, which is decidable.
More directly, reduction in P amounts to head-reduction for a string rewrite system, whose
termination is known to be decidable [4].

5.2 The first-order path calculus is Turing complete

We prove undecidability for the case with both first-order functors and nested modules by
encoding any Turing machine into a first-order fragment of our calculus. As we have seen
above, both features provide us with a pushdown automaton. Since a Turing machine is
essentially a pushdown automaton with two stacks, the trick will be to use respectively
functor application and submodule access to encode each stack.

To preclude the potential use of higher-order functors during path rewriting, it is enough
to ensure the following two conditions. The second condition is overly restrictive, but it
makes it easier to check the first one.

1. The path rewrite system of a program P yields no paths of the forms x(p) or x.m(p)
during rewriting. Thus variables or their submodules cannot be applied.

2. Only the toplevel structure can define functors λ (x)e, where e must not be or contain a
functor. Thus functors cannot return functors.

We enforce these conditions by confining ourselves to a fragment of the calculus defined
in Figure 6. The new syntax is restricted in the following three ways.

1. Only paths of the form ε.m can appear in functor positions.
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Paths p ::= ε | x | ε .m(p) | p.m
Toplevel expression te ::= λ (x){m1 = p1 · · ·mn = pn }
Program P ::= {m1 = te1 · · ·mn = ten}

Fig. 6 A first-order fragment

2. A program is a sequence of toplevel expressions, which are lambda abstractions of struc-
tures.

3. A toplevel expression only contains abbreviation bindings. In particular, it does not con-
tain functors.

Let M = (Q,Σ ,Γ ,δ ,q0,b,F) be a Turing machine [13], where Q is the set of states;
Σ ⊆ Γ is the set of input symbols; Γ is the set of tape symbols; δ is the transition function;
q0 ∈ Q is the start state; b is the blank symbol, which is in Γ but not in Σ ; F is the set
of final states, which we assume to be empty without loss of generality. In particular, the
arguments of δ (q,a) are a state q ∈ Q and a tape symbol a ∈ Γ . The value of δ (q,a), if it is
defined, is a triple (q′,a′,D), where q′ is the next state; a′ is the symbol in Γ to be written in
the scanned cell of the tape; D is a direction, which is either R (for right) or L (for left). A
Turing machine M halts on an empty tape if M halts on an initial configuration q0.

Proposition 1 For any Turing machine M = (Q,Σ ,Γ ,δ ,q0,b,F), there exists a program P
and a path p such that M halts on an empty tape if and only if the evaluation of p with
respect to P terminates.

Proof.
A configuration a1a2 · · ·ai−1qaiai+1 · · ·an of the Turing machine M is encoded by a path

ε.q(ε.ai−1(· · ·(ε.a2(ε.a1(ε.b̂(ε)))) · · ·)).ai.ai+1. · · · .an.b̂

where the special symbol b̂ is not contained in Q or Γ . The intuition is that the right hand
side of the tape is encoded with the dots and the left hand side with functor applications.
The head part ε.q of the path represents the current state and ai, which follows the head part
by a dot, is the symbol to be read next. We put b̂ at the inner most functor application and
the outermost dot to represent the right and left limits of input symbols on the tape. The
initial configuration q0 (with an empty input tape) of the Turing machine is represented by
ε.q0(ε.b̂(ε)).b̂.

The rest of the proof is structured according to the following three steps.

1. We define a set of path rewrite rules RM from the Turing machine M.
2. We show that RM encodes the Turing machine M.
3. We give a program P whose path rewrite system is RM .

A path rewrite system RM , encoding the transition function δ , is defined as the union of
the following sets:

1. {ε.q(x).a → ε.q′(ε.a′(x)) | δ (q,a) = (q′,a′,R)}
2. {ε.q(x).a → x.q′.a′ | δ (q,a) = (q′,a′,L)}
3. {ε.q(x).b̂ → ε.q(x).b.b̂ | q ∈ Q}
4. {ε.b̂(x).q → ε.q(ε.b̂(x)).b | q ∈ Q}
5. {ε.a(x).q → ε.q(x).a | a ∈ Γ ,q ∈ Q}



13

The first two sets of rules encode transitions of M. The rules from third and fourth sets
are for elongating the tape, moving the edge by adding a blank symbol to the left or right
extremity on demand. Finally, the rules from the last set commute a tape symbol with the
current state, to allow the next move to take place. A transition of M can be simulated either
by a rule of 1, potentially followed by a rule of 3, or by a rule of 2 followed by a rule of 4 or
5.

It is straightforward to prove that these rules encode the Turing machine. Suppose
δ (q,ai) = (q′,a′i,L):
1. When i 6= 1, or i = n and a′i 6= b, then we have a move

a1 · · ·ai−1qaiai+1 · · ·an ` a1 · · ·ai−2q′ai−1a′iai+1 · · ·an
reflected by the reduction sequence

ε.q(ε.ai−1(· · ·(ε.a1(ε.b̂(ε))) · · ·)).ai.ai+1. · · · .an.b̂
→ ε.ai−1(ε.ai−2(· · ·(ε.a1(ε.b̂(ε))) · · ·)).q′.a′i.ai+1. · · · .an.b̂
→ ε.q′(ε.ai−2(· · ·(ε.a1(ε.b̂(ε))) · · ·)).ai−1.a′i.ai+1. · · · .an.b̂

2. When i = 1, then we have a move
qa1a2 · · ·an ` q′ba′1a2 · · ·an

reflected by the reduction sequence
ε.q(ε.b̂(ε)).a1.a2 · · · .an.b̂

→ ε.b̂(ε).q′.a′1.a2 · · · .an.b̂
→ ε.q′(ε.b̂(ε)).b.a′1.a2 · · · .an.b̂

3. When i = n and a′i = b, then we have a move
a1a2 · · ·an−1qan ` a1a2 · · ·an−2q′an−1

reflected by the reduction sequence
ε.q(ε.an−1(· · ·(ε.a1(ε.b̂(ε))) · · ·)).an.b̂

→ ε.an−1(ε.an−2(· · ·(ε.a1(ε.b̂(ε))) · · ·)).q′.b.b̂
→ ε.q′(ε.an−2(· · ·(ε.a1(ε.b̂(ε))) · · ·)).b.b̂

The cases where δ (q,ai) = (q′,a′i,R) are similar.

Finally we give a program P whose path rewrite system is RM . We then have that M halts
on an empty tape if and only if the evaluation of ε.q0(ε.b̂(ε)).b̂ with respect to P is termi-
nating. Recall that the path rewrite system of the program {q = λ (x){a = ε.q′(ε.a′(x))}} is
{ε.q(x).a → ε.q′(ε.a′(x))}. The rule exactly corresponds to rules from the first set above.
In general the toplevel structure of P consists of the following definitions.
1. For each q in Q,

q = λ (x){
a1 = ε.q′1(ε.a′1(x)) · · · am = ε.q′m(ε.a′m(x))
b1 = x.r′1.b

′
1 · · · bn = x.r′n.b

′
n

b̂ = ε.q(x).b.b̂
}

where
{(a1,q′1,a

′
1), · · · ,(am,q′m,a′m)} = {(a,q′,a′) | δ (q,a) = (q′,a′,R)}

and
{(b1,r′1,b

′
1), · · · ,(bn,r′n,r

′
n)} = {(b,r′,b′) | δ (q,b) = (r′,b′,L)}

2. b̂ = λ (x){q1 = ε.q1(ε.b̂(x)).b · · · qn = ε.qn(ε.b̂(x)).b}
where {q1, · · · ,qn} = Q.

3. For each a in Γ ,
a = λ (x){q1 = ε.q1(x).a · · · qn = ε.qn(x).a}

where {q1, · · · ,qn} = Q. ut
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Taking a closer look at the proof of Proposition 1, one notices that our encoding of
Turing machines fully exploits the abilities of the first-order path calculus. A Turing machine
requires at least two stacks, which the calculus barely provides through functor applications
for one, and nesting for the other. Of course, since it is Turing complete, it can also encode
any computation, including an arbitrary number of stacks, but this would require all the
tricks one uses with Turing machines. This observation suggests that even a weak restriction
would be sufficient for the calculus to lose its Turing completeness, as we will see in the
next section.

The undecidability result was shown for the untyped calculus, but it is possible to obtain
it in a typed setting. For simplicity, we assume that the transition function δ of our Tur-
ing machine M = (Q,Σ ,Γ ,δ ,q0,b,F) is total. Consider the following (regular) recursive
signatures S and T :

S = µX .{a1 : X . . .an : X b̂ : X}
T = {q1 : S . . .qn : S}

where Q = {q1, . . . ,qn} and Σ = {a1, . . . ,an}. It is easy to see that, in our encoding of the
Turing machine, the toplevel functors ε.ai’s and ε.b̂ have signatures T → T , and ε.qi’s have
signatures T → S. In particular, all variables are of signature T . The signature for a functor
argument indicates all the submodules an argument must provide, which seems a natural
enough notion of typing. So, path resolution stays undecidable even if we restrict functor
arguments through explicit regular signatures.

6 Terminating path evaluation

In the last paragraph of the previous section, we have seen that encoded Turing machines
are typable by (regular) recursive signatures. The recursion is needed, as the way we encode
Turing machines requires unfettered access to submodules of functor arguments to simulate
an (unbounded) stack. The signature T we assigned to functor arguments is only usable
because it allows us to access arbitrarily deep nested modules, x.q.a1.a2 and x.q.a1.a2.a3,
etc. . .

These remarks suggest that we might escape undecidability by restricting such accesses,
and moreover that such a restriction could be naturally expressed by annotating functor argu-
ments by (non-recursive) signatures. Following this idea, in the next subsection we introduce
access signatures, which have only finitely deep nesting, and require that a submodule of a
functor argument can only be accessed if it is present in its access signature. We then present
a terminating path normalization algorithm, named semi-ground normalization, which im-
plements this restriction, and prove it correct and complete. All proofs can be found in
appendix A. Some technically subtle lemmas and theorems have been checked using the
Coq proof assistant, and the proof scripts are available at the following location.

http://www.math.nagoya-u.ac.jp/~garrigue/papers/Path-coq.zip

6.1 Access signatures

In Figure 7, we revise our language to extend it with access signatures. An access signa-
ture maps module names available for access to their own access signatures. There is no
recursion in access signatures; i.e. an access signature is a finite tree whose leaves are empty
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Access signatures S ::= {m1 : S1 · · ·mn : Sn}
Expressions e ::= {m1 = e1 · · ·mn = en} | λ (x : S)e | p
Paths p ::= vp | rp
Variable paths vp ::= x | vp.m
Rooted paths rp ::= ε | rp(p) | rp.m
Access paths ap ::= ε | ap.m

Fig. 7 Revised syntax

signatures. Since we do not have higher-order functors, access signatures only contain sig-
natures for structures. Abstracted variables are annotated with access signatures. Paths are
restricted to be either variable or rooted, where only the latter may contain functor applica-
tions in accordance with the absence of higher-order functors. We call sequences of module
names access paths. Concatenation of a path p and an access path ap, noted p.ap, is defined
as the path obtained by replacing the leading ε in ap by p, i.e. p.ap is p suffixed by the
module names of ap. We can see an access signature as a prefix-closed set of access paths,
and we will sometimes write ap ∈ S to denote that the access path ap is included in the
access signature S.

To simplify the presentation, we assume that all bound variables in a program are dis-
tinct, and write sigP(x) to denote the access signature of x in the program P.

A well-typed program should not access a submodule of a variable not allowed by the
variable’s access signature or pass an argument which does not satisfy the access signature.
We will use this restriction to keep path evaluation terminating. Recall, however, that we are
dealing with a program whose well-typedness is not yet known. Since path evaluation is nec-
essary to decide type equality during type checking, we cannot rely on the well-typedness
of the whole program to preclude ill-typed uses of variables during path evaluation: the de-
pendency between type checking and path evaluation would be circular. Therefore our ter-
minating path evaluation must enforce well-typed uses of variables, while expanding paths
simultaneously.

Syntactic restrictions will not be sufficient to eliminate invalid accesses to variables
during path evaluation. For instance, consider the following program.

{m1 = λ (x : {}){m2 = x m3 = ε.m1(x).m2.m4} m5 = {}}

Superficially, no attempt is made to access submodules of x. Once we recognize that the
path ε.m1(x).m2 actually refers to x, however, we see that m3 is an abbreviation for x.m4. Yet,
even looking at the evaluation of a path would not expose the problem, since variables are
immediately substituted:

ε.m1(ε.m5).m3 → ε.m1(ε.m5).m2.m4 → ε.m5.m4

To effectively enforce well-typed uses of variables as specified by their access signatures,
we need to make sure that evaluating any of the paths appearing in a program requires no
ill-typed access to variables.
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r-src
P ` p 7→ (θ ,e) P ` θ safe e not a path

P ` p ↓ p
r-vp

ap ∈ sigP(x)
P ` x.ap ↓ x.ap

r-exp
P ` p 7→ (θ , p′) P ` θ safe P ` θ(p′) ↓ q

P ` p ↓ q

r-dot
P ` p ↓ p′ P ` p′.m ↓ q

P ` p.m ↓ q
r-app

P ` p1 ↓ p′1 P ` p′1(p2) ↓ q
P ` p1(p2) ↓ q

s-subst
P ` pi : sigP(xi) (1 ≤ i ≤ n)

P ` [x1 7→ p1, . . . ,xn 7→ pn] safe

s-rec
P ` p ↓ q P ` q.mi : Si (1 ≤ i ≤ n)

P ` p : {m1 : S1 . . . mn : Sn}

Fig. 8 Safe reduction, safety for a signature and safe substitutions

6.2 Safe programs

In this subsection we formalize the above restrictions by the notion of safe program, defined
through the derivability of a judgment, in the style of natural semantics [15]. We then prove
that if a program is safe then path evaluation with respect to this program terminates for
any ground path (Proposition 2). In the next subsection, we will prove the decidability of
program safety. In Appendix A.3, we will provide an alternative definition of safety based
on term rewriting.

We define safe programs in terms of safe reduction, safety for a signature and safe sub-
stitutions.

Definition 4 A path p reduces safely to q with respect to a program P when P ` p ↓ q is
derivable. A path p is safe for a signature S with respect to P when P ` p : S is derivable. A
substitution θ is safe with respect to P when P` θ safe is derivable. Specifically, we may say
a path p is safe with respect to P when there is a path q such that P ` p ↓ q, or equivalently
P ` p : {}. The derivable judgments are given in Figure 8.

Intuitively a path p is safe with respect to a program P when p reduces to a head normal
form q, and for all functor applications appearing during this reduction, path arguments are
safe with respect to their access signatures. By head normal form we mean either a variable
path, or a rooted path which does not point to another path.

If we ignore the P ` θ safe in the premises of r-src and r-exp, the r-rules define a big
step reduction relation in the standard way. Rules r-src and r-vp end reduction for head
normal forms. r-exp implements a rewriting step: p is rewritten into θ(p′), and we further
check that θ(p′) reduces to q. r-dot and r-app are congruence rules, which allow applying
rewriting steps to a prefix of the current path.

Furthermore, functor applications are checked to verify that each argument satisfies the
signature of the corresponding parameter, via the judgment P ` θ safe implemented by rule
s-subst. It ensures that the argument contains the required submodules, which must be safe
themselves, as specified by the access signature of the parameter, via the judgment P ` p : S
implemented by rule s-rec. This check is carried out before each expansion step (rule r-exp),
and once more on the final path (rule r-src), ensuring that all subpaths in a derivation satisfy
their safety requirements.
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Paths p ::= vp | rp
Expressions e ::= {m1 = e1 · · · mn = en } | λ (x : S)e | pi

Fig. 9 Expressions with integer labels

Note that we do not normalize path arguments in the resulting path; we just check their
safety before reducing to head normal form. From the point of view of safety, path argu-
ments do not just represent one path, but rather all paths in their access signatures. Therefore
keeping one normal form would not be sufficient to avoid repeated checks.

This inference system defines our notion of safe program:

Definition 5 A program P is safe if all the paths it contains can be reduced safely, or equiv-
alently if P ` p : {} for all the paths p appearing in P.

Safety for a signature is preserved by both safe reduction and safe substitution.

Lemma 1 (typing equivalence) If P ` p : S, P ` p ↓ q, and P ` p′ ↓ q, then P ` p′ : S.
(Coq-checked)

Lemma 2 (substitution) If P` p : S and P` θ safe, then P` θ(p) : S. Moreover, if P` p ↓ q
for a rooted path q, then P ` θ(p) ↓ θ(q). (Coq-checked)

We can see the effectiveness of our restriction in the following proposition, which states
that if a program is safe, then evaluation of any ground path (i.e. containing no variables)
terminates.

Proposition 2 If P is safe and q is a ground path, then the evaluation of q with respect to P
terminates.

6.3 Semi-ground normalization

The last step is to prove that program safety is decidable, by exhibiting an algorithm that
normalizes a path, either providing a proof of safety, or returning an error if the program is
unsafe.

To detect cyclic abbreviations, we label paths appearing inside expressions with integers
in the syntax of our calculus, in Figure 9. We assume that a program contains no duplicate
occurrences of the same integer label and write Labels(P) to denote the set of integer labels
occurring in the program P. Note that for any program P, Labels(P) is finite.

By preventing the same label from being expanded twice, we can easily define a termi-
nating evaluation algorithm. The main difficulty is how to detect non-termination of path
evaluation in a complete way. We will achieve completeness by expanding paths using a
call-by-value strategy, while η-expanding functor arguments to uncover errors in subpaths
on the fly. By adopting a call-by-value strategy, we can minimize the depth of the call stack,
avoiding false-positives when a function is called twice in a non-recursive way. By applying
η-expansion, we can make path normalization semi-ground, in the sense that we need not
normalize paths after applying substitution. To avoid transforming the source program, we
will perform “virtual” η-expansion during path normalization.

Let us see on examples why these techniques are needed, and how they work in practice.
For readability, we omit the ε prefix to toplevel modules in subsequent examples.
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Here is a simple example, applying a functor twice.

{ f = λ (x)x1 a = {} n = f ( f (a))2}

If we were to adopt a call-by-name strategy, the evaluation of n would proceed as follows
(keeping labels while expanding abbreviations).

n → f ( f (a))2 → ( f (a)1)2 → ((a1)1)2

The final path ((a1)1)2 contains two occurrences of 1, showing that we would encounter
1 twice in the same calling stack. Failing on this example clearly loses completeness, as n
reduces safely to a.

This can be solved by using a call-by-value strategy and discarding locations on normal
forms with special ]-steps.

n → f ( f (a))2 → f (a1)2 ]→ f (a)2 → (a1)2

Compare the above call-by-value evaluation with the previous call-by-name evaluation: at
every step, the call stack contains each label at most once.

This is not the whole story: due to the presence of variable paths, we may not be inter-
ested in the argument itself, but in one of its submodules. Here is a concrete example.

{ f = λ (x : {m : {}}){m = x.m1}
a = {m = {}} n = f ( f (a)).m2 }

Call-by-value evaluation of n would proceed as follows.

n → f ( f (a)).m2 → ( f (a).m1)2 → ((a.m1)1)2

While n safely reduces to a.m, the final path ((a.m1)1)2 contains two occurrences of 1. The
trick of evaluating arguments first did not work here, because f (a) is already a normal form
and we are interested in f (a).m rather than f (a). Our solution is to η-expand the parameter
of f through currying, introducing a distinct argument for each access path in the access
signature. All calls to f need to be transformed correspondingly.

{ f = λ (xε : {})λ (xm : {}).{m = (xm)1} a = {m = {}}
n = f ( f (a)(a.m))( f (a)(a.m).m).m2 }

This makes the evaluation succeed.

n → f ( f (a)(a.m))( f (a)(a.m).m).m2

→ f ( f (a)(a.m))(a.m1).m2

]→ f ( f (a)(a.m))(a.m).m2 → (a.m1)2 ]→ a.m

Our normalization algorithm will simulate this behavior by computing an access substitution
from the lookup substitution on the fly, without actually transforming the source program.
An access substitution maps each variable path in the access signature of an argument to the
normal form of a suitable subpath of the corresponding argument.

We now define an algorithmic version of path evaluation, called semi-ground normal-
ization in Figure 10. Again this algorithm reduces a path to head normal form, verifying that
all involved paths are safe. We use π as a metavariable for sets of integer labels. We call π
a lock, as we are not allowed to expand abbreviations in it. The semi-ground normalization
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1: sgnlz(P,π,q) =

2: match q with

3: | x ⇒ x

4: | ε ⇒ ε
5: | q1.m ⇒ expand(P,π,sgnlz(P,π,q1).m)
6: | q1(q2) ⇒ expand(P,π,sgnlz(P,π,q1)(q2))

7: expand(P,π,x.ap) =

8: if ap ∈ sigP(x) then x.ap else error

9: expand(P,π,rp) =

10: let (θ ,e) = lookup(P,rp) in

11: let ρ = vp subs(P,π,θ) in

12: match e with

13: | qi ⇒ if i ∈ π then error else subs(θ ,ρ,sgnlz(P,{i}∪π,q))
14: | {m1 = e1 . . .mn = en}⇒ rp
15: | λ (x)e′ ⇒ rp

16: subs(θ ,ρ,rp) = θ(rp)
17: subs(θ ,ρ,vp) = if vp ∈ dom(ρ) then ρ(vp) else vp

18: vp subs(P,π, id) = id
19: vp subs(P,π,θ [x 7→ p]) =

20: sig subs(P,π,x, p,sigP(x))∪ vp subs(P,π,θ)

21: sig subs(P,π,vp,rp,{}) = [vp 7→ sgnlz(P,π,rp)]
22: sig subs(P,π,vp,x.ap,{}) =

23: if ap ∈ sigP(x) then [vp 7→ x.ap] else error

24: sig subs(P,π,vp, p,{m1 : S1}]S) =

25: sig subs(P,π,vp.m1, p.m1,S1)∪ sig subs(P,π,vp, p,S)

Fig. 10 Semi-ground normalization

uses an auxiliary function lookup, which is an algorithmic version of the lookup relation
defined in Section 4. Precisely,

lookup(P, p) =
{

(θ ,e) when P ` p 7→ (θ ,e)
error otherwise

We recall that the lookup relation is decidable and deterministic. Hence lookup is well-
defined.

Semi-ground normalization implements the ideas outlined above using four mutually re-
cursive functions sgnlz, expand, vp subs and sig subs and one auxiliary function subs. These
four functions keep track of which abbreviation bindings in the program are under expansion
using π . Therefore π is passed around between recursive calls. In particular, π constitutes
the measure for the termination of the algorithm. It is consulted and incremented on line 13
when expand unfolds an abbreviation binding. We simply prohibit expand from revisiting
the same abbreviation twice to avoid looping without losing completeness. Splitting the al-
gorithm into separate routines effectively implements discarding integer labels on normal
forms.

Now we look at the working of each function in more detail. sgnlz recurses structurally
on its input path, calling expand on the results of the recursive calls. expand checks safety
of the input path and unfolds abbreviations. A variable path is safe if it conforms to the



20

variable’s access signature (line 8). For a rooted path to be safe, its arguments must be safe
as well. This is checked by the call to vp subst on line 11. vp subst(P,π,θ) returns an access
substitution ρ , which maps a variable path x.ap such that x is in dom(θ) and ap is in sigP(x)
to the result of calling sgnlz on θ(x).ap. It signals an error when θ is not safe, and hence such
a substitution does not exist. Importantly, when unfolding an abbreviation binding, expand

expands the right hand side of the binding without substituting its variables, and only applies
the substitution afterwards. This is justified by Lemma 3: if subs(θ ,ρ,sgnlz(P,{i}∪π,q)) is
successful then so is sgnlz(P,π,θ(q)) and their results are identical. The auxiliary function
subs performs case analysis on the input path, and applies θ when the input is a rooted path,
and ρ when the input is a variable path in the domain of ρ (i.e. its head variable is in the
domain of θ ).

We have proved correctness, termination, and completeness of the semi-ground normal-
ization.

Theorem 1 (correctness) For any program P, lock π and path p, if sgnlz(P,π, p) = q then
P ` p ↓ q. (Coq-checked)

Theorem 2 (termination) For any program P, lock π and path p, sgnlz(P,π, p) is termi-
nating.

Lemma 3 (postponement) If p is a rooted path, sgnlz(P,π ′, p) = q and vp subs(P,π,θ) =
ρ with π ⊂ π ′, then sgnlz(P,π,θ(p)) = subs(θ ,ρ ,q). (Coq-checked)

Theorem 3 (completeness) For any program P and path p, if P is safe and P ` p : {}, then
sgnlz(P, /0, p) 6= error.

Combining correctness and completeness, sgnlz provides a decidable check for the safety
of programs: for each abbreviation (binding) of P, we check in turn if its right hand side is
normalizable by running sgnlz. If all the abbreviations in P are normalizable then P is safe,
otherwise P is unsafe.

6.4 Towards a practical language

As we mentioned earlier, the calculus we studied in this paper is intended to describe a
signature language. Access signatures therefore actually denote “signatures of signatures”.
We have also made a number of technical design choices intended to make the formalization
and proofs simpler. For all these reasons, this calculus is a theoretical one, and it needs to be
adapted for use in a practical language.

One of these choices was about using absolute paths, starting from the root ε . For this
paper, the simplicity this provides was a major gain. With a single root and the convention
on bound variables (requiring their names to be distinct), we were able to formalize and
prove Lemmas 2 and 3 and Theorem 1 in Coq, and this in a reasonably short time. Our
experience with formalized proofs for lambda-calculi suggests that a syntax with binders
would have required much more effort to prove those lemmas in a proof assistant. Yet, in a
practical language recursive references should be supported through recursion variables, as
in Moscow ML [28] and in our previous works [25,14].

The main reason to prefer recursion variables is modularity and separate compilation.
The type system then only needs to know the signatures of the recursion variables mentioned
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inside each separately compiled module, rather than the source code of the whole program.
Note however that the system we have presented in this paper is already about signatures.
In order to apply our algorithm, we only need to know (partial) signatures for all recursive
modules in the program, which does not break modularity. For a stronger support of separate
compilation, the same algorithm could also be used in an incremental way, considering
strongly connected signatures one group at a time, assuming that already checked groups
are safe. So, the fact that our algorithm uses absolute paths prevents neither modularity nor
separate compilation.

We still need to apply our algorithm to actual programs using recursion variables. Start-
ing from a language having signatures similar to Traviata, we extend the translation of Sec-
tion 3 in two respects. First we need to extract access signatures from functor argument
signatures, rather than just dropping them. Second, since functor argument signatures may
be recursive, we shall check them too, independently of the above extracted version. This
can be done by changing the translation for functors and applications as

[[functor (X : S1) → S2]]
p
σ =

{arg = [[S1]]
p.arg
σ app = λ (X : S1)[[S2]]

p.app(X)
σ }

σ(p1(p2)) = σ(p1).app(σ(p2))

where S1 is the access signature obtained from [[S1]] by replacing all path references with the
empty signature {}. Each functor is converted into a module containing a submodule arg,
which is the translation of the type of the argument, and a submodule app, which is a functor
returning the type of the result when provided with an argument type. Accordingly, functor
application extracts the app submodule. The idea is to separate the information about the
type of the functor argument from the behaviour of the functor itself. The arg submodule
is only used to check its safety and is never accessed, whereas the app submodule may be
referred to from other parts of the program.

In real programs, not all modules need to be recursive. So we shall investigate whether it
would be possible to syntactically distinguish recursive modules declaring self variables and
non-recursive modules, as in Moscow ML, in order to allow the latter to use higher-order
functors. This would allow us to keep backwards compatibility with existing non-recursive
code.

7 Related work

OCaml supports a recursive module extension on top of a ML module system with applica-
tive functors [19], which is our starting point. In Section 2, we have discussed deficiencies
of OCaml’s applicative functors: the type system cannot deduce some desired type equali-
ties [23] and may diverge on some programs while resolving path references [24]. In our pre-
vious work [25], we addressed these deficiencies by enriching the signature language with
module abbreviations, allowing for strengthened module path equality, and by developing a
decidable path resolution. Having module paths in signatures can express a limited form of
recursive signatures. But the resulting signature language is less powerful than recursively
dependent signatures of [2]: our signature language does not include abstract signatures,
which limits polymorphic signatures. To obtain decidability in [25] we gave up any access
to submodules of functor parameters. In this paper we lifted this restriction, which is a major
improvement.
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The undecidability result of Section 5 was first presented at the 9th International Work-
shop on Termination [26]. The normalization algorithm and decidability results presented
here are new.

The problem of path resolution has been addressed in [3], which studied the problem
of decidability of Scala type checking. They presented an algorithmic Featherweight Scala,
FSalg, and gave a decidable type checking algorithm for it. The calculus FSalg has type
path abbreviations and abstract type members in classes, which can be instantiated in a way
similar to functor application. Having these two together, they had to resolve path references
and rule out cyclic definitions of class members statically. They do not preclude higher-
order functors, but simply avoid using the same abbreviation binding twice during the head
normalization of the same path. In practice, their algorithm cannot handle our first example
of Section 6.3. Here is the encoding of our example in Scala, where x is the functor input,
and res its output:

trait f { type x; type res = x; };
val b1 = new f { type x = Int; };
type b = b1.res;

val n1 = new f { type x = b; };

This part of the encoding is typable by the Scala interpreter (version 2.9.1), but here is the
result of accessing n1.res.

scala> type n = n1.res;

error: cyclic aliasing or subtyping involving type res

This is basically the same example as those given to us through the Scala mailing list [31].
It would be interesting to see whether our algorithm can help improve the situation.

We have also previously studied path resolution in the context of an object system with
type parameters and type members [27]. This gave us our first insights in the problem, and
how to rule out cycles while keeping expressivity.

Recursive modules extensions of ML-style modules with generative functors have been
proposed by several authors [2,29,6,8,22,14]. In particular, several solutions to the double
vision problem have been given. The double vision problem refers to the inability to iden-
tify the external name of an abstract type with its internal name inside the recursive module
where the type is defined. It has proved difficult to solve. Our solution [14] introduces path
substitutions in the context of a path-based formalization of recursive modules; although
this was done for an ML module system with generative functors, we believe it scales to a
module system with applicative functors. (Detailed comparison of different solutions to the
double vision problem is given in [14].) Notably, our solution uses structural type equality
for recursive types without imposing syntactic contractiveness. (Hence, our type equivalence
relation is different from that of [10]. Both systems allow opaque type cycles, but the inter-
pretations of types differ.) This is important for us to model the type system of OCaml which
supports structural recursive types (i.e. object types and polymorphic variants) and does not
impose syntactic contractiveness. Our path-based approach also closely follows the current
implementation of OCaml modules.

8 Conclusion

In this paper we have examined the problem of resolving path references in presence of
recursion, motivated by recent work on adding recursion to the ML module system. We have
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d-dot
P `t rp ↓ rp P ` rp.m 67→

P `t rp.m ↓ rp.m

d-app
P `t rp ↓ rp P `t p : {} P ` rp(p) 67→

P `t rp(p) ↓ rp(p)

Fig. 11 Safety for termination

formalized the problem by defining a rewrite system on paths and proved that the problem
is undecidable even if we allow only first-order functors and submodule access to functor
arguments, in the absence of higher-order functors.

This result and some observations on the decidability of subsystems led us to design
a terminating path resolution algorithm, by requiring functors to be first-order and restrict-
ing access to submodules of functor arguments to a finite depth. The algorithm is directly
applicable to our recursive module calculus, Traviata [25].

This is a major improvement over the original Traviata, where all accesses to submod-
ules of functor arguments were prohibited. If we see this calculus as a successor to the ML
module system, restricting arguments to a finite depth is not a problem, as this restriction is
already present implicitly in ML programs. However, we still need to work on integration
with higher-order functors, which are now fully part of ML. We hope to find an appropriate
way to separate recursive and non-recursive uses of modules, so that this limitation would
apply only to recursive ones.
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A Proofs for terminating path evaluation

In this appendix, we give proofs for the properties and theorems of section 6.

A.1 Safe programs

We first define a notion of safety for termination, which will be needed to prove Proposi-
tion 2.

Definition 6 A path p reduces safely for termination to q with respect to a program P when
P `t p ↓ q is derivable, `t being the inference system obtained by adding the rules d-dot and
d-app of Figure 11 to the rules in Figure 8 where ` is replaced by `t. A path p is safe for
termination for the signature S with respect to P when P `t p : S is derivable. It is just safe
for termination if P `t p : {}. A substitution θ is safe for termination with respect to P when
P `t θ safe is derivable.

Lemma 1 (typing equivalence) If P ` p : S, P ` p ↓ q, and P ` p′ ↓ q, then P ` p′ : S.

Proof. (Coq-checked) By inversion of s-rec. ut
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Lemma 2 (substitution) If P` p : S and P` θ safe, then P` θ(p) : S. Moreover, if P` p ↓ q,
then P ` θ(p) ↓ θ(q) when q is rooted, and otherwise P ` θ(p) ↓ r and P ` θ(q) ↓ r for the
same path r. Both results also hold for `t.

Proof. (Coq-checked) We prove these statements by mutual induction on the structure of the
derivation of P ` p : S and the safe reductions and safe substitutions involved. The last rule
is necessarily s-rec, with first premise P ` p ↓ q. We perform case analysis on q.

Case 1: q is a rooted path.
We first show that P ` θ(p) ↓ θ(q) by induction on the derivation of P ` p ↓ q with case
analysis on the last rule used.
Case r-src: We have p = q, P ` p 7→ (θ ′,e) and P ` θ ′ safe for some θ ′ and e. After substi-
tution we have P ` θ(p) 7→ (θ(θ ′),e). By induction hypothesis, for any x in domθ ′ we have
P ` θ(θ ′(x)) : sigP(x), so that P ` θ(θ ′) safe, and we conclude.
Case r-exp: The hypotheses are P ` p 7→ (θ ′, p′), P ` θ ′ safe and P ` θ ′(p′) ↓ q. If θ ′(p′)
were a variable path, we would have P ` θ ′(p′) ↓ θ ′(p′), and q would be a variable path too,
which contradicts our assumption. Therefore we have P` θ(p) 7→ (θ(θ ′), p′), P` θ(θ ′) safe

and, by induction hypothesis, P ` θ(θ ′(p′)) ↓ θ(q), and we conclude.
Cases r-dot and r-app: Immediate. Note that p′ and p′1 cannot be variable paths.

Finally, we need to show that P ` θ(q) : S, relying on the second premise of s-rec (P `
q.mi : Si). By induction hypothesis we have P ` θ(q.mi) : Si, and since θ(q.mi) = θ(q).mi
we conclude P ` θ(q) : S by s-rec.

Case 2: q is a variable path.
Suppose q = x.m1 . . .mn. If θ(x) is a variable path, then θ(q) is a variable path, and P `
θ(q) ↓ θ(q) by P ` θ safe and r-vp. We can prove by an easy induction that P ` θ(p) ↓ θ(q)
(which also gives us the extra result with r = θ(q)), and we obtain P ` θ(p) : S like in Case
1.

If θ(x) is not a variable path, we must be more careful, as new reduction steps may
appear, both in the reductions of p and of its submodules for s-rec. For this reason we prove
P ` θ(p) : S by induction on the derivation of P ` p ↓ q, assuming P ` p : S as extra hypoth-
esis. We perform case analysis on the last rule used.
Case r-src: impossible.
Case r-vp: immediate by P ` θ safe; we trivially have convergence since p = q.
Case r-exp: We have P ` p 7→ (θ ′, p′) and P ` θ ′(p′) ↓ q. By applying the induction hypoth-
esis to the latter, we obtain P ` θ(θ ′(p′)) : S and conclude by r-exp.
Case r-dot: By hypothesis P ` p.m : S, so that P ` p : {m : S}, and by induction hypothesis
P ` θ(p) : {m : S}, thus P ` θ(p.m) : S. For convergence, either p′ is rooted, and the new
left premise is P ` θ(p) ↓ θ(p′), so that we can conclude using the induction hypothesis for
the right premise; or p′ is a variable path, and there exists a path r such that P ` θ(p) ↓ r and
P ` θ(p′) ↓ r. We know that P ` r : {m : S} by typing equivalence, so that there is a r′ such
that P ` r.m ↓ r′, and as result both P ` θ(p.m) ↓ r′ and P ` θ(p′.m) ↓ r′ by the uniqueness
of safe reductions.
Case r-app: p′1 cannot be a variable path, since p′1(p2) would not be valid. Thus we have
P ` θ(p1) ↓ θ(p′1). From the hypothesis P ` p1(p2) : S, we obtain P ` p′1(p2) : S, since
they both reduce to the same q. By induction hypothesis we obtain P ` θ(p′1(p2)) : S, thus
P ` θ(p1(p2)) : S by r-app. We obtain convergence in the same way.

The same proof applies to `t: a dangling path, as in the conclusion of rules d-dot and d-

app, is a rooted path such that none of its prefixes refers to an abbreviation, but itself cannot
be looked up. This property is preserved by substitution. ut
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The following lemma relates reduction steps and safety derivations. It is used in the
ensuing proof of termination.

Lemma 4 If P is safe, P ` q : S, and q → q′ by a reduction step of RulesP, then P ` q′ : S,
and the size of its derivation is strictly smaller than the size of P ` q : S. This also holds for
P safe for termination and `t.

Proof. First note that it is sufficient to prove this property for S = {}: P ` q : S is equivalent
to ∀ap ∈ S,P ` q.ap : {}, and if q → q′ then q.ap → q′.ap.

We prove it by induction on the structure of q.
If the reduction step was on q itself (i.e. not on one of its arguments), then there can be

only one such redex, and this reduction corresponds exactly to the first use of r-exp in our
derivation. After reduction, this r-exp step disappears, replaced by its third premise, and the
derivation is otherwise unchanged, so the size of the derivation is strictly smaller.

If the reduction was done on an argument of q, by inversion of P ` q : {}, this argument
must be safe for a signature S appearing in P. By induction hypothesis, after reduction this
proof of safety becomes smaller. Moreover, if this argument is required for reducing q, i.e.
if by some use of r-exp it becomes the head of the path we are reducing, then the next step in
the derivation was necessarily to reduce it, so that a second occurrence of r-exp disappears.

ut

Proposition 2 If P is safe (or safe for termination) and q is a ground path, then the evalua-
tion of q (in the sense of Definition 3) with respect to P terminates.

Proof. Note that any safe program is also safe for termination, so we only consider the
second case.

We first prove that for any signature S used in P, P `t q : S can be derived by induction
on q. This amounts to proving that there is a path q′′ such that P `t q.ap ↓ q′′, for any access
path ap in S. We prove it by induction on q′ = q.ap.

– If q′ = ε , P `t ε ↓ ε by r-src.
– If q′ = p.m, then by induction hypothesis P `t p ↓ p′, and either p′.m is dangling thus

P `t p.m ↓ p′.m holds by d-dot, or there exist θ and e such that P ` p′.m 7→ (θ ,e), and
since P `t p ↓ p′, the arguments of p′, i.e. θ , are safe for termination. If e is a path, then
by the safety of P, P `t e : {}, and by our substitution lemma, P `t θ(e) : {}. Otherwise
P ` p′.m ↓ p′.m by r-src.

– If q′ = p1(p2), then by induction hypothesis P `t p1 ↓ p′1 and P `t p2 : S2 for any S2 in
P, and either p′1(p2) is dangling, and P `t p1(p2) ↓ p′1(p2) by d-app, or there exist θ
and e s.t. P ` p′1(p2) 7→ (θ ,e), and from our two induction hypotheses, the arguments
of p′1(p2), i.e. θ , are safe for termination, which lets us conclude as in the p.m case.

Next we show that the evaluation of q terminates by induction on the size of the deriva-
tion of P `t q : {}. This size is finite, and lemma 4 provides the induction step. ut

A.2 Correctness of semi-ground normalization

Theorem 1 (correctness) For any program P, lock π and path p, if sgnlz(P,π, p) = q then
P ` p ↓ q. Moreover, for any substitution θ , if vp subs(P,π,θ) = ρ , then P ` θ safe, and for
any x ∈ dom(θ) and ap ∈ sig(x), P ` θ(x.ap) ↓ ρ(x.ap).
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Proof. (Coq-checked) We prove both properties by functional induction.
If p = x or p = ε , then P ` p ↓ p.
If p is a variable path x.ap, then sgnlz will call expand, which in turn checks that ap is

in the signature of x, and returns p itself, and P ` p ↓ p.
If p = p1(p2), we assume sgnlz(P,π, p1) = q1. By induction hypothesis on p1, P `

p1 ↓ q1. We call expand on q1(p2). First we call lookup to obtain θ and e. Then we call
vp subs to obtain ρ , so that P ` θ safe by induction hypothesis. If e is not a path, we have
P ` q1(p2) ↓ q1(p2) by r-src, and P ` p1(p2) ↓ q1(p2) by r-app. Let e be the path qi. By
induction hypothesis, we have P ` q ↓ q′ with q′ = sgnlz(P,{i}∪π,q). If q′ is a rooted path,
by the substitution lemma, we have P` θ(q) ↓ θ(q′), so that P` q1(p2) ↓ θ(q′) by r-exp. If q′

is a variable path x.ap, by inversion we have ap ∈ sigP(x). If x /∈ dom(θ), by the substitution
lemma we have P ` θ(q) ↓ x.ap (= ρ(x.ap) since x.ap /∈ dom(ρ)). Otherwise, by induction
hypothesis on vp subs, we have P ` θ(x.ap) ↓ ρ(x.ap), so that P ` θ(q) ↓ ρ(x.ap) by the
substitution lemma. In both cases we conclude that P ` q1(p2) ↓ ρ(x.ap) by r-exp.

If p = p1.m, we prove the property in the same way, replacing occurrences of p1(p2)
and q1(p2) by p1.m and q1.m respectively, and r-app by r-dot.

Next we prove the property on vp subs. This amounts to proving that for each x 7→ p in
θ , if sig subs(P,π,x, p,sig(x)) = ρ , then P ` p : sigP(x) and for all ap ∈ sigP(x), P ` p.ap ↓
ρ(x.ap). Since the latter implies the former, we just need to prove the latter.

If p is a variable path y.ap′, then we just check that y.ap′.ap is valid, and return ρ(x.ap)=
y.ap′.ap, so that P ` y.ap′.ap ↓ ρ(x.ap) by r-vp.

If p is a rooted path, then sgnlz(P,π, p.ap) = q for some q, P` p.ap ↓ q, and ρ = [x.ap 7→
q]. As a result, P ` p.ap ↓ ρ(x.ap). ut

Theorem 2 (termination) For any program P, lock π and path p, sgnlz(P,π, p) is termi-
nating.

Proof. Termination is guaranteed since any recursive call sgnlz(P,π, p) is strictly decreasing
with respect to a well-founded lexicographic ordering ≺ on pairs (π, p) of a path and a lock,
where the two constituent ordering ≺π on locks and ≺p on paths are respectively defined as
follows.

– π1 ≺π π2 if π2 ⊂ π1 ⊂ Labels(P).
– p1 ≺p p1.m for any field name m
– p1 ≺p p1(p2) for any path p2
– p2.ap ≺p p1(p2) for any path p1 and access path ap ∈ S, where S is the union of all

access signatures of P.

Since Labels(P) and S are finite, both ≺π and ≺p are well-founded, thus its lexicographic
combination ≺ is well-founded too. ut

A.3 Safe rewriting

Before proving the completeness of semi-ground normalization, we first need to introduce
an alternative definition of safety, in terms of termination of a term rewriting system. We will
show that the two definitions of safety are equivalent (Proposition 3). Then, we prove that
when semi-ground normalization fails for a program, one can build an infinite reduction in
this rewriting system, hence the program is unsafe according to the definition in Section 6.2.
This alternative definition is also interesting for itself, since it gives a more computational
view of what safety means, which may be more intuitive.
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A way to formalize invalid paths concisely in the framework of path rewriting systems
is to transform invalid paths into non-termination. That is, we introduce conditional path
rewriting rules ErrorsP for a program P that cause non-termination whenever invalid paths
appear during reduction:

(1) x.ap → x.ap for any x and ap s.t. ap 6∈ sigP(x)
(2) x.ap(x) → x.ap(x) for any path variable x and access path ap
(3) p.m → p.m if P ` p 7→ (θ ,e), e not a path,

and P ` p.m 67→
(4) p(x) → p(x) if P ` p 7→ (θ ,e), and e is a structure

Here x indicates a path variable appearing in paths to be rewritten, not to be confused with
the x used for rewriting rule variables. The first two rule sets cause non-termination when a
variable is either decomposed beyond its access signature or applied; both cases break our
syntactic restriction. The third one transforms dangling references to non-termination. The
fourth one ensures that only functors are applied; otherwise it causes non-termination.

We also need to enforce the safety check on path arguments. For this we modify rewrite
rules generated for functors, using the last rule of ErrorsP to let reduction progress.

Rules(p,λ (x : S)e) =
Rules(p!(x),e)∪{p(x) → snd(chk(x.ap1, . . . ,x.apn), p!(x))

where ap1 . . .apn are the maximal access paths of S, i.e. all the paths s.t. api ∈
S∧∀m api.m 6∈ S.

The idea is that p(q).p′ is a path where q has not been checked for safety as argument
of p yet, and p!(q).p′ is the same path appearing in a context where the safety of q may
have been checked. Actual path expansion occurs in two steps. First we rewrite p(q).p′ into
snd(chk(q.ap1, . . . ,q.apn), p!(q)).p′. Here snd and chk are added to evaluation contexts,
with an extra rule for snd,

C[] ::= . . . | snd(C[], p) | chk(. . . ,C[], . . .)

(snd) snd(x,y) → y

so that one can reduce any of the q.api, checking the safety of q as argument of p. Note that
depending on which submodules of q are actually accessed in p!(q).p′, rewriting q.api may
introduce a non-termination behavior that would not appear otherwise. One can then use
rule (snd) to discard chk(q.ap1, . . . ,q.apn). Then we are just left with p!(q).p′, which can
be rewritten according to the definitions in P once all the applications have been converted.
We also add the following rule to the lookup predicate, so that rules (3) and (4) of ErrorsP
will work on both forms of applications.

P ` p(q) 7→ (θ ,e)
P ` p!(q) 7→ (θ ,e)

Definition 7 A program P is safe for evaluation if for all paths p appearing as right hand
side of an abbreviation binding in P, there is no infinite reduction using RulesP ∪ErrorsP.

Proposition 3 For any program P, safety (Definition 5) and safety for evaluation (Definition
7) are equivalent.
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Proof. We first show that if a program is safe, then it is safe for evaluation. I.e., for any
path q, if P ` q : {} then there is no infinite reduction starting from q using the rules of
RulesP ∪ErrorsP. For a term t of our path rewriting system, containing possibly some snd
and chk, we define the pure path of t, noted pp(t), as t where all occurrences of snd were
reduced (and, as a result, all occurrences of chk discarded), and all ! were removed. The
number of pure applications in t, noted pa(t), is the number of path applications contained
in t, after having reduced all the snd, and excluding the !-applications. We define the multiset
of implicit paths of t, noted pps(t), by induction on the structure of t:

pps(t) = pa(t)× ({pp(t)}∪
∪
{pps(t ′) | t ′ ∈ chks(t)})

chks(ε) = /0
chks(x) = /0

chks(t.m) = chks(t)
chks(t1(t2)) = chks(t1)∪ chks(t2)
chks(snd(chk(t1, . . . , tn), t)) = {t1, . . . tn}∪ chks(t)

By n× S we mean that we duplicate n times the contents of the multiset S. We define the
measure of a term t as the multiset of the sizes of the derivations of P ` p : {}, for p in
pps(t). We prove that any reduction step t → t ′ keeps the typability of the paths in pps(t ′),
and decreases this measure according to the multiset ordering. If the reduction is one of
the original ones, then according to lemma 4, each path in pps(t) is either reduced into a
corresponding path in pps(t ′), with its derivation size reduced, or it remains unchanged, and
at least one pure path is reduced. If the new rule p(x) → snd(chk(x.ap1, . . . ,x.apn), p!(x))
is applied, then the number of pure applications of p(q) is reduced by 1, and we replace this
p(q) by q.ap1, . . . , q.apn, which were already contained in the derivation of P` p(q) : {}, so
that they are safe, and the measure decreases. If snd(x,y)→ y is applied, then we discard the
first argument, which leaves pp(t ′) intact, and the measure decreases. Rules (1)-(4) cannot
apply, since pp(t) is safe.

Since the multiset ordering is well-founded, this proves that there cannot be infinite
reductions.

Conversely, we prove that if there is no infinite reduction using RulesP ∪ErrorsP, then
P must be safe. We define the relation p � q iff p can be rewritten into a path q0 such that
C[θ(q)] ∈ pps(q0) for some path context C and substitution θ . This relation must be anti-
symmetric on the paths appearing in P (i.e. we never have both p � q and q � p, otherwise
we could easily build an infinite reduction.) As a result � can be topologically extended into
a total order on the paths appearing as right hand side of abbreviation bindings in P.

We prove that if there is no infinite reduction starting from p, then P ` p : {}, starting
with the smallest paths in this topological order (those with no q in P such that p � q).
We rewrite p using a customized strategy. That is, we basically use a call-by-name strategy
(not reducing arguments), with the exception of the arguments of chk which we reduce to
normal form before discarding them with snd. Thanks to this strategy, we are able to build
our safety derivation straightforwardly. Namely, we obtain the safety of substitutions from
the normalization of chk, and then actually apply the original rewriting rule on the non-
reduced argument, as does our inference system. Moreover, since we check following a
topological order, we can use our substitution lemma to build the third premise of r-exp rule.
Other inference rules need just to be inserted as glue, as they perform no actual reduction.

ut
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A.4 Completeness proof

The following lemmas are used by the completeness proof. The first one proves that post-
poning substitution is correct.

Lemma 3 (postponement) If p is a rooted path, sgnlz(P,π ′, p) = q and vp subs(P,π,θ) =
ρ with π ⊂ π ′, then sgnlz(P,π,θ(p)) = subs(θ ,ρ ,q).

Proof. (Coq-checked) By functional induction on sgnlz(P,π ′, p). ut

Lemma 5 (idempotence) If sgnlz(P,π, p) = q, then sgnlz(P,π,q) = q.

Proof. By functional induction, using lemma 3. ut

Theorem 3 (completeness) For any program P and path p, if P is safe and P ` p : {}, then
sgnlz(P, /0, p) 6= error.

Proof. By proposition 3, P ` p : {} implies that there is no infinite reduction from p using
RulesP ∪ErrorsP.

We show by functional induction that sgnlz(P,π, p) = error implies the existence of such
an infinite reduction starting from either p or an abbreviation in P, assuming that for each
i ∈ π , there are paths pi and qi such that P ` pi 7→ (id,(qi)i), and reductions qi

∗→Ci[θi(p)].
In case of repeated attempts to expand the same abbreviation, we will use them to build an
infinite reduction. Since some recursive calls to sgnlz will be on paths that do not appear in P,
we also keep a reduction q0

∗→C0[p], q0 being either the original p, or the last abbreviation
in P we are currently normalizing. This last reduction will be used for errors, producing an
infinite reduction with rules of ErrorsP. For the sake of simplicity, we do not distinguish
normal applications and !-applications in the paths we reduce. We just assume that where
needed we can get the arguments of chk, in order to build an infinite reduction.

We start with π = /0 and q0 = p, so that our only reduction is the 0-step one from q0 to
p.

If p = x or p = ε , then sgnlz(P,π, p) = p 6= error.
If p = p1.m or p = p1(p2), then we first try to evaluate sgnlz(P,π, p1). If it results in an

error, then we can reuse our reductions qi
∗→ Ci[θi(p)] (i ∈ π), as Ci[θi(p)] contains θi(p1)

(e.g. Ci[θi(p)] = Ci[θi(p1).m] in the first case), and q0
∗→ C0[p] since p contains p1. Using

the induction hypothesis we conclude that there is an infinite reduction.
If sgnlz(P,π, p1) = p′1, then we call expand(P,π, p′), with p′ either p′1.m or p′1(p2), and

since by correctness we have a reduction p1
∗→ p′1, we also have a reduction p ∗→ p′, and

we can complete all reductions qi
∗→ Ci[θi(p)] (i ∈ π) into reductions qi

∗→ Ci[θi(p′)], and
q0

∗→ C0[p′]. If p′ = x.ap, then to have an error it must be ap 6∈ sigP(x), and we can use a
reduction (1) of ErrorsP to create an infinite reduction q0

∗→C0[p′] →C0[p′] → . . . If p′ is a
rooted path, then we first call lookup(P, p′). If this fails we can use either a reduction (3) or
(4) of ErrorsP to create an infinite reduction. Otherwise, we obtain θ and e.

Then we call vp subs(P,π,θ). From the reduction point of view, if p′j is an argument of
p′, then there is a prefix p j(p′j) of p′, and we can find a step p j(p′j)→ snd(chk(p′j.ap j1, . . . ,
p′j.ap jn j ), p j!(p′j)) inside the reduction leading to p′, allowing us to check all the required
subpaths of the argument p′j. This is also what sig subs(P,π,x j, p′j,sigP(x j)) does. If p′j is
a variable path x.ap, then it checks for each ap′ ∈ sigP(x j) whether ap.ap′ ∈ sigP(x). Since
all those ap′ are prefixes of some of the ap jk, if we have an error then we can build an



30

infinite reduction starting from p′j.ap jk. If p′j is a rooted path, then for each ap′ ∈ sigP(x j),

we call sgnlz(P,π, p′j.ap′). If one of them fails, we can construct a context C such that p′ ∗→
C[p′j.ap jk], so that we can complete all our reductions into qi

∗→ Ci[θi(C[p′j.ap jk])] (i ∈ π)

and q0
∗→C0[C[p′j.ap jk]], and by induction hypothesis we have an infinite reduction starting

from q0.
If vp subs(P,π,θ) succeeds, the next step is either to return successfully from expand,

which contradicts the presence of an error, or we have e = qi, and we check whether i ∈ π .
If i ∈ π , then since p′ → θ(q) = θ(qi), we have a reduction qi

∗→Ci[θi(p′)]→Ci[θi(θ(qi))],
so that we can build an infinite reduction by repeatedly appending it to itself, i.e. qi

∗→
Ci[θi(θ(qi))]

∗→Ci[θi(θ(Ci[θi(θ(qi))]))]
∗→ . . .

If i 6∈ π , we call sgnlz(P,{i}∪π,q), which must fail. First we need to extend our reduc-
tions. We have P ` p′ 7→ (θ ,q), and p′ ∗→ θ(q). We can combine this reduction with our
other reductions to obtain q j

∗→ C j[θ j(θ(q))] ( j ∈ π). Since q is an abbreviation in P, we
update q0 to q, with new reductions qi = q ∗→ q, and q0 = q ∗→ q. So by induction hypothesis,
in case of error we have an infinite reduction starting from one of the qi or q0. ut
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