
Tracing ambiguity in GADT type inference

Jacques Garrigue∗ Didier Rémy†

Abstract

GADTs, short for Generalized Algebraic DataTypes, extend
usual algebraic datatypes with a form of dependent typing
that has many useful applications, but raises serious issues
for type inference. Pattern matching on GADTs introduces
type equalities with limited scopes, which are a source of am-
biguities that may destroy principal types—and must be re-
solved by type annotations. By tracing ambiguities in types,
we may tighten the definition of ambiguities and confine them,
so as to request fewer type annotations. Now in use in
OCaml 4.00, this solution also lifts some restrictions on ob-
ject and polymorphic variant types that appeared in a previ-
ous implementation of GADTs in OCaml.

1 Introduction

GADTs, short for Generalized Algebraic DataTypes, extend
usual algebraic datatypes with a form of dependent typing
by enabling type refinements in pattern-matching branches.
They can express many useful invariants of data-structures,
provide safer typing, and allow for more polymorphism.
They have already been available in some Haskell implemen-
tations (in particular GHC) for many years and now appear as
a natural addition to strongly typed functional programming
languages.

However, this is by no means trivial. In their presence,
full type inference is in general undecidable, even in the re-
stricted setting of ML-style polymorphism; moreover, many
well-typed programs then lack a most general type. A solu-
tion to both problems is to require explicit type annotations.
Unfortunately, while it is relatively easy to design a sound
typing algorithm for a language with GADTs, it is surpris-
ingly difficult to keep principal types without requesting full
type annotations on every case analysis.

While GHC 7 does not exactly require full annotations, it
follows a similar strategy, called OutsideIn [3], which re-
quires full type information to be inferred from the external
context, for every pattern-matching.

Surprisingly, GADTs may not play well with other fea-
tures of the language: in our first implementation of GADTs
in OCaml [1], we had to restrict the use of object types and
polymorphic variants in combination with GADTs, to prevent
local equations from breaking the invariant that the same row
variable may only appear in two record types that are equal.

From those limitations, we realized that ambiguity is ac-
tually central to the question of GADT type inference and

∗Nagoya University, Graduate School of Mathematics
†INRIA, Rocquencourt

can be considered independently of principality. Local type
equations introduced inside a pattern-matching branch are the
source of ambiguities: they allow implicit type conversions,
i.e. several inter-convertible forms for types that are irrelevant
in the scope of the equation, but become nonconvertible—
hence ambiguous—when leaving the branch as the equation
can no longer be used.

Detection and rejection of ambiguous programs is a pre-
liminary to type inference. Our definition of non-ambiguity
allows us to restrict the set of valid typings. We conjecture
that among the valid typings there is always a principal one
(i.e. subsuming all of them), which our inference algorithm
finds. Besides, this restriction ensures that types related by
local equations do not leak outside of their scopes, recover-
ing the internal invariants needed by OCaml.

2 Refining ambiguity
The informal definition of ambiguity is actually so general
that it may just encompass too many cases. Consider the fol-
lowing program.

type _ t = Int : int t

let f (type a) (x : a t) =
match x with Int -> 1

Type t is a GADT with one index parameter (denoted by the
single underscore), and a single case Int, for which the index
is the type int.

In the definition of f, we first introduce an explicit univer-
sal variable a, called a skolem variable, treated in a special
way in OCaml as it can be refined by GADT pattern match-
ing. By constraining the type of x to be a t, we are able to
refine a when pattern-matching x against the constructor Int:
the equation a= int becomes available in the corresponding
branch, that is while typechecking the expression 1, which
can be assigned either type a or int. As a result, f can be
given either type α t→ int or α t→ α. This seems to fulfill
the definition of ambiguity, and it should be rejected.

But should we really reject it? Consider the following
slight variations in the definition of f:

let f’ (type a) (x : a t) =
match x with Int -> true

let g (type a) (x : a t) (y : a) =
match x with Int -> (y > 0)

In f’, we just return true, which has the type bool, unre-
lated to the equation. In g, we actually use the equation to
turn y into an int but eventually return a boolean. Clearly
both cases are non-ambiguous. But how do they differ from

1



the original f? The only reason we have deemed f to be am-
biguous is that 1 could potentially have type a by using the
equation. However, nothing forces us to use this equation,
and if we do not use it the only possible type is int. It looks
even more innocuous than g, where we need indirectly the
equation to infer the type of the body.

So, what would be a really ambiguous type? We obtain one
by mixing a’s and int’s in the returned value.

let g’ (type a) (x : a t) (y : a) =
match x with Int -> if y > 0 then y else 0

Here, the then branch has type a while the else branch has
type int, so choosing either one would be ambiguous.

How can we capture this refined notion of ambiguity? The
idea is to track whether such mixed types are escaping from
their scope. An intuitive way to see whether this is the case
is not to allow the expression to have either type but force
it to have the ambiguous type a or int, i.e. in a way, the
intersection type a∧int, which we may just represent as the
set of types {a,int}.

A set of types has to be coherent, i.e. all the types it con-
tains must be equivalent under the equations available in the
current scope. However, a set of types may suddenly become
incoherent when leaving a scope, which is what we call an
ambiguity.

We allow type annotations in the source program as a way
to avoid ambiguities. Intuitively, in an expression (e : τ), both
the inner e and the outer (e : τ) have sets of types T1 and T2
that may differ, but such that τ be included in both. This way,
ambiguity doesn’t leak in either direction.

let g’ (type a) (x : a t) y =
match x with Int ->
(if (y : a) > 0 then (y : a) else 0 : a)

By adding type annotations on y and on the conditional, both
variable y and conditional may be given unique types, which
are unambiguous when leaving the scope of the equation.
That is, (y : a) and 0 can be assigned the type {a,int},
which is also that of the conditional if ... else 0, while the
annotation (if ... else 0 : a) and variable y both have
the singleton type {a}.

Of course, it is too verbose to write annotations every-
where, so we let annotations on parameters propagate to
their uses and annotations on results propagate inside pattern-
matching branches. The function g’ may just be written:

let g’ (type a) (x : a t) (y : a) : a =
match x with Int -> if y > 0 then y else 0

or, using the syntax for explicitly polymorphic types:

let g’ : type a. a t -> a -> a = fun x y ->
match x with Int -> if y > 0 then y else 0

3 Discussion

A natural question at this point is why not just require that
the type of the result of pattern-matching a GADT be fully
known from annotations? This would avoid the need for this
new notion of ambiguity. This is perhaps good enough if we

only consider small functions: as shown for g’, we may write
the function type in one piece (as in either one of the last two
versions) and still get the full type information.

However, the situation degrades when using local let
bindings. For example, consider the function h below:

let h : type a. a t -> int = fun x ->
let y = match x with Int -> 1 in y*2

The return type int only applies to y*2, so we cannot prop-
agate it automatically as an annotation for the definition of
y. Basically, one would have to explicitly annotate all let
bindings whose definition uses pattern-matching on GADTs.
This may easily become a burden, especially when the type is
completely unrelated to the GADTs (or accidentally related
as in the definition of f, above).

GHC 7 improves on this in using constraint solving in place
of directional annotation propagation. This greatly reduces
the need for annotations, and it even accepts some programs
that we would deem ambiguous.

let k (type a) (x : a t) (y : a) =
let z =
match x with Int -> if y>0 then y else 0

in z + 1

However, constraint solving requires a completely new in-
ference engine. Moreover, it comes together with a non-
generalizing typing rule for let, whose impact on ML pro-
grams appears to be much bigger than on Haskell programs.
Finally, it appears that GHC applies a relaxed version of Out-
sideIn, where some arbitrary choices are allowed at toplevel.
This seems to imply that a strict application of OutsideIn, as
required for principality, was deemed too constraining.

Another interesting approach to type inference for
GADTS [2] is to use several sophisticated passes that propa-
gate local typing constraints (and not just type annotations)
progressively to the rest of the program. In practice, the
amount of type annotations required on source programs is
roughly comparable with the OutsideIn strategy, although
both techniques are quite different and hard to compare.

We believe that our notion of ambiguity is simple enough
to be understood easily by users, avoids an important number
of seemingly redundant type annotations, and provides an in-
teresting alternative to a strict OutsideIn approach.

References
[1] J. Garrigue and J. L. Normand. Adding GADTs to

OCaml: the direct approach. Presented at the Workshop
on ML, Sept. 2011.

[2] F. Pottier and Y. Régis-Gianas. Stratified type inference
for generalized algebraic data types. In Proceedings of
the 33rd ACM Symposium on Principles of Program-
ming Languages (POPL’06), pages 232–244, Charleston,
South Carolina, Jan. 2006.

[3] D. Vytiniotis, S. Peyton Jones, T. Schrijvers, and
M. Sulzmann. OutsideIn(X) Modular type inference with
local assumptions. Journal of Functional Programming,
21(4-5):333–412, Sept. 2011.

2



A A brief technical overview

The key to our solution is tracing ambiguities during type in-
ference. Although we intuitively infer sets of types rather
than types, as suggested above, this is not quite sufficient,
because we sometimes need to keep ambiguous types syn-
chronized.

For example, consider the application of a function choice
of type α → α → α to a value v of ambiguous type {int,a}.
Should its type be {int → int,a→ a} obtained by sepa-
rately considering the application of the function to each pos-
sible type for the argument, or {a,int}→ {a,int} obtained
by just instantiating α with the ambiguous type {a,int}? In
fact, both types carry complementary information: the former
says that the domain and the codomain are really the same,
while the later says that the function itself is non-ambiguous,
just sending values of an ambiguous type into another am-
biguous type.

Interestingly, we can represent both information simulta-
neously, in the more precise notation Σ(α ∈ {a,int}) α → α
that means “α → α for some α in {a,int}”: we recover
the later by replacing α with {a,int} while we generate
the former by successively replacing α with each element
of {a,int}. Moreover, this allows to distinguish between
types Σ(α ∈ {a,int}) α → α and Σ(α ∈ {a,int}) Σ(β ∈
{a,int}) α → β, where ambiguities are correlated between
the domain and the codomain in the former case, but not in the
later case. This is a useful technical difference for principality
of type inference—but we may ignore it for the moment.

In fact, it is often easier to manipulate types rather than
type schemes. This is possible by leaving the assumption α ∈
{a,int} in the typing context, using auxiliary type variables
as an indirection to ambiguous types.

The example given above can be typed in Γ0 by introduc-
ing a variable α to refer to the ambiguous type {a,int}. Let
us write Γ for Γ0,α ∈ {a,int}. We have both Γ ` choice :
α → α → α, since f is polymorphic and can be applied to
an ambiguous type as well, and Γ ` v : α; then, we conclude
Γ ` choice v : α → α using the normal typing rule for ap-
plication. Finally, we may discharge the assumption and say
Γ0 ` choice v : Σ(α ∈ {a,int}) α → α, so that this expres-
sion may be let-bound and reused later in some other context.

Abstracting ambiguous types as type variables has the
other advantage that type inference with ambiguities becomes
a straightforward adaptation of ML-style type inference. It
suffices to modify the unification algorithm so that it accepts
equivalence classes with ambiguous types as solved forms,
while a standard implementation of unification would reject
them as clashes.

More precisely, unification problems can be represented
using conjunctions of multi-equations (and existential quan-
tifiers to deal with introduction and renaming of type vari-
ables). A multi-equation is just a multiset of types that should
be made equal. The standard unification algorithm proceeds
by rewriting such problems into solved forms, i.e. such that a
type variable appears in at most one multi-equation and each
multi-equation is itself in solved form.

In the absence of GADTs, a multi-equation is solved when
it contains at most one non variable type. Indeed, if a multi-

equation contains two types τ1 t1 and τ2 t2, either the top
constructors t1 and t2 are equal and the multi-equation can
be decomposed, or they are different and the unification prob-
lem is unsolvable.

When keeping track of ambiguities in the presence of
GADTs, we introduce skolem variables, which lie between
unification variables and type constructors. A skolem vari-
able a stands for explicit polymorphism: it is, by default, a
rigid variable and, as type constructor, it clashes with any
other skolem variable or type constructor. However, when
pattern matching a GADT, a skolem variable may also be re-
fined by some equation of the form a = τ, which behaves as
a type abbreviation: the equation is ignored until the skolem
variable a clashes with a type constructor or another skolem
variable; then, the equation is used as a “joker” and τ is
added to the multi-equation involved in the conflict with a;
the conflict is then ignored as long as the equation remains
in scope. Thus, solved multi-equations may now also contain
one or several refined skolem variables (whose jokers have
been used).

Of course, an equation introduced in the branch of some
pattern matching is removed when leaving the branch: a
skolem variable a that was refined in this branch looses its
magical power and recovers its default rigid status that makes
it clash with other type constructors or unrefined skolem vari-
ables. Only accessible multi-equations have to be checked for
clashes: hopefully, multi-equations that contain the skolem
variable a haven’t used their joker (and a does not clash) or
became inaccessible and “garbage collected”; otherwise, a
clash occurs and unification fails. (This is reported in OCaml
as out of scope use of an equation.)

For example, consider the definition of f in §2. The pattern
Int introduces the equation a = int. The branch 1 can be
typed with α where α ≈ int. The type a is not involved and
the equation can be safely removed when leaving the branch.

By contrast, in the branch expression if y > 0 then y

else 0 of the definition of g’ we first type y with α where
α ≈ a and 0 with β where β ≈ int, then add the equation
α ≈ β to get the type of the conditional (we ignore type-
checking of the condition). All three equations are merged
into α ≈ β ≈ a ≈ int. Without GADTs, a ≈ int would
clash and typechecking would fail. Here, since a has an as-
sociated equation a = int, we replace a by its expansion (in
fact, we keep it, but add parentheses to mark it is no longer
conflicting): α ≈ β (≈ a) ≈ int ≈ int, which may be de-
composed into the solved form α ≈ β (≈ a) ≈ int. When
leaving the branch, the equation is removed and a recov-
ers its normal status; as a result this multi-equation becomes
α ≈ β ≈ a ≈ int, which is conflicting. Since it determines
the type of the branch, it is still accessible and becomes the
source of an ambiguity. The program fails.

Ambiguity may be avoided if the whole branch is anno-
tated (with either a or int) so that the ambiguity is confined
to the inner scope; alternatively, one could annotate one or
the other side of the conditional, i.e. (1:a) or (y:int) so that
the conditional itself is non ambiguous.

3


