
Journal of Information Processing Vol.22 1–14 (Jan. 2014)

[DOI: 10.2197/ipsjjip.22.1]

Regular Paper

Lightweight linearly-typed programming with lenses and
monads

Keigo Imai1,a) Jacques Garrigue2,b)

Received: January 1, 2011, Revised: January 1, 2011,
Accepted: January 1, 2011

Abstract: This paper shows an encoding of linear types in OCaml and its applications. The encoding enables to write
correct OCaml programs based on safe resource access guided by linear types. Linear types ensure that every variable
is used exactly once, and, thus, they can be used to check the behavioural aspects of programs such as resource access
and communication protocols in a static way. However, linear types require significant effort to be integrated into
existing programming languages. Our encoding allows the vanilla OCaml typechecker to enforce linearity by using
lenses and a parameterised monad. Parameterised monads are monads with a pre- and a post-condition, and we use
them to track the creation and consumption of resources at the type level. Lenses, which point at parts of a data type,
are used to refer to a resource in pre- and post-conditions. To handle comfortably structured data such as linearly typed
lists, we further propose an extension to pattern matching based on the syntax-extension mechanism of OCaml. We
show an application to static checking of communication protocols in OCaml.

Keywords: OCaml, linear types, functional programming, monad, lens

1. Introduction
Linear types guarantee that their values are used only once;

thus, they have been utilised to statically analyse the behaviour of
programs, such as resource usage and communication protocol.

Several programming languages have adopted linear-like
types, such as affine types in Rust [26] and uniqueness types in
Clean [23]. In Rust, affine types are exploited to statically track
variable occurrences, achieving efficient memory management.
A recent proposal [4] also introduces linear types into the Glas-
gow Haskell Compiler [16].

However, introducing linear types into an existing program-
ming language incurs a high implementation cost, as it requires
modifying its compiler and type system. If one could encode
them through a library using only built-in language features,
in a customizable way, it would not only allow linearly typed
resource-safe programming in that language, but also encourage
experimenting with various programming techniques based on
the combination of linear types and other language features.

Embedding linear types in Haskell. Techniques to encode
linear types have been developed for Haskell. In particular, Po-
lakow [24] directly embeds the linear lambda calculus in higher
order abstract syntax (HOAS) [20] form, making it readily us-
able. However, his embedding relies on Haskell type classes and
functional dependencies [12] to track the consumption of linear

1 Faculty of Engineering, Gifu University. Yanagido, Gifu, 501-1193,
Japan

2 Graduate School of Mathematics, Nagoya University. Furocho,
Chikusaku, Nagoya, 464-8602, Japan

a) keigoi@gifu-u.ac.jp
b) garrigue@math.nagoya-u.ac.jp

values; thus, it is difficult to adapt it to other programming lan-
guages.

In this paper, we show an embedding of linear types in OCaml
using a parameterised monad [1] and lenses [5], [21], and pro-
pose as library linocaml built around it. A parameterised monad
is a monad with extra type parameters representing the pre- and
post-conditions of monadic computations, which statically en-
code the generation and consumption of linear resources.*1 A
lens is a functional reference that points to a position in a data
type and is used as a reference to a linear resource in a pre- or
post-condition.

The linear type encoding presented in this paper depends only
on parametric polymorphism, available in many programming
languages, thus achieving a lightweight and portable implemen-
tation.

We also provide extra features for pattern matching against
structured data, such as linearly typed lists, by using the syn-
tax extension mechanism of OCaml, thus allowing much more
flexible programming with linear types. As an application of our
pattern matching extension, we introduce an encoding of session
types [8] and show a solution to the so-called Santa Claus prob-
lem in concurrent programming [2], [27].

Prior work by the authors. This paper builds on Garrigue’s
Safeio API [6], and on the encoding of session types proposed
by Imai et al. [9], [10]. Both used some form of parameterised
monads and lenses. Pattern matching for linear types was also
used in [10], albeit in a limited way.

The contribution of this paper is to extend the linear type en-

*1 Polakow [24] and other authors also use a parameterised monad that en-
codes the pre- and post-conditions on linearity (See § 6).

© 2014 Information Processing Society of Japan 1

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

coding in Safeio and our prior session type work, so as to allow
linear functional programming on structured data such as arrays
and lists.

Structure of this paper. The rest of this paper is organised as
follows: In § 2, we introduce an example of programming with
linear types. § 3 shows our linear type encoding using a parame-
terised monad and lenses in OCaml. In § 4 we introduce a syntax
extension to handle linearly typed structured data. As an appli-
cation, we show a solution to the Santa Claus problem using a
session type encoding and linearly typed structured data in § 5.
§ 6 introduces related work, and § 7 concludes this paper.

Source code. linocaml is available at https://github.
com/keigoi/linocaml.

2. Linear types and resource control
We overview programming with linear types using Wadler’s

example [28]. In this section, we consider a purely functional API
for linear arrays in an imaginary programming language equipped
with linear types. In the following, we use the OCaml syntax, i.e.
type variables are annotated with quotes ('a, 'b, ...) and type
constructors are written in a postfix manner ('a list for a list of
type 'a).

Example 2.1 (Linearly typed array API) We give a lin-
early typed array API as follows, where 'a larr is the type of
linearly typed arrays whose element type is 'a.

val alloc : 'a list -> 'a larr
val dealloc : 'a larr -> unit
val lookup : int -> 'a larr -> 'a larr * 'a
val update : int -> 'a -> 'a larr -> 'a larr
val map : ('a -> 'b) -> 'a larr -> 'b larr
val to_list : 'a larr -> 'a larr * 'a list

The usage of each operation is as follows:
• alloc xs creates an array from the elements in list xs.
• dealloc arr deallocates array arr.
• lookup i arr returns the pair of arr itself and the i-th el-

ement of array arr (array bounds are not checked statically,
but at run-time).

• update i e arr returns an array with i-th element e and all
other elements having the same value as in arr.

• map f arr returns an array whose elements are the result of
applying f to each element in arr.

• to_list arr returns the pair of arr itself and the list of the
elements of arr.

□
The linearly typed array API enables one to reuse its memory

location after use, and, in particular, it allows in-place update of
types of elements in an array.

Example 2.2 (Type updating) The following shows an ex-
ample of updating types of elements in an array.

let arr = alloc [100; 200; 300] in
let arr1 = map string_of_int arr in
let arr2 = update 1 "Hello" arr1 in
let arr3, x = lookup 1 arr2 in
dealloc arr3;

print_endline x

This code initially allocates an array of type int larr contain-
ing 100, 200, 300, and then it converts (map) it into an array of

strings (type string larr) by applying string_of_int to each
element. Then, it updates the first element with "Hello", looks
up that element and binds it to x to finally print it after deallo-
cating the array. Linear typing allows us to ensure that the array
variables arr, arr1, arr2 and arr3 are consumed exactly once.
Therefore, purely functional operations such as map and update
can be implemented by in-place (destructive) memory update.*2

□
A violation of linearity may lead to unsafe behaviour. For ex-

ample, the following code is unsafe:

let arr = alloc [100; 200; 300] in
let arr1 = map string_of_int arr in
update 1 400 arr

It first allocates an array of integers arr and then converts it to a
string array arr1. Here, the third line is unsafe because it writes
an integer 400 into the string array. A linear type system can pre-
clude such violations statically.

3. Encoding linear types using a parame-
terised monad and lenses

Variable bindings like arr, arr1, ... in Example 2.2 may vi-
olate linearity since the OCaml type system does not track the
number of occurrences of a variable. From this observation,
we developed a combinator library LinMonad based on param-
eterised monads, which provides a way to implicitly handle linear
values without any variable binding. The uses of linear values
appear explicitly in the monad type; thus, the linearity constraints
can be statically guaranteed by the OCaml type system.

First, in § 3.1, we introduce a framework to statically track the
generation and consumption of a single linear resource. Next,
in § 3.2, we develop a framework that manipulates multiple lin-
ear resources by having the pre- and post-conditions hold slot se-
quences, and by introducing lenses that refer to individual linear
resources in these sequences. § 3.3 shows an implementation of
LinMonad based on the state monad, and introduces a technique
to implement specific linearly typed APIs in this framework.

3.1 A parameterised monad
For an example of programming using LinMonad, in Figure 1,

we show an API for linear arrays that encodes the linearly typed
functions of Example 2.1. Each function returns a monadic value
(command) that represents an array operation, rather than an ar-
ray. A monadic value has type (pre, post, α) monad, and two
monadic values can be concatenated like a UNIX command to
make a compound one. The type pre is an input value from the
previous command, post is an output to the next command, and α
is the result of the computation.

Type 'a larr is declared as an alias for 'a array lin, where
lin is the type constructor that distinguishes linear types. The
type of the computation result is wrapped with data, represent-
ing an unrestricted (non-linear) type. Constructors lin and data
do not have a special role in this section; however, they play a

*2 However, since arrays of floating-point numbers (float array) in
OCaml are specialised (unboxed) [15], their memory representation is
not compatible with that of other arrays, and special care will be required
in the implementation (see § 3.3).

© 2014 Information Processing Society of Japan 2

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

type 'a larr = 'a array lin
val alloc : 'a list ->
(empty, 'a larr, unit data) monad

val dealloc :
('a larr, empty, unit data) monad

val lookup : int ->
('a larr, 'a larr, 'a data) monad

val update : int -> 'a ->
('a larr, 'a larr, unit data) monad

val map : ('a -> 'b) ->
('a larr, 'b larr, unit data) monad

val to_list :
('a larr, 'a larr, 'a list data) monad

Fig. 1 A linearly typed array API based on LinMonad

type ('pre, 'post, 'a) monad
type 'a lin = Lin__ of 'a
type 'a data = Data of 'a
val return : 'a -> ('pre, 'pre, 'a data) monad
val (>>=) : ('pre, 'mid, 'a data) monad ->

('a -> ('mid, 'post, 'b) monad) ->
('pre, 'post, 'b) monad

val (>>) : ('pre, 'mid, 'a data) monad ->
('mid, 'post, 'b) monad ->
('pre, 'post, 'b) monad

type empty = Empty
val run :
(unit -> (empty, empty, 'a data) monad) ->
'a

Fig. 2 A parameterised monad LinMonad

crucial role in the pattern matching introduced in § 4.
The function alloc creates an array. Its return type

(empty, 'a larr, unit data) monad

says that it consumes an empty value (of type empty) as input,
allocates an array of type 'a larr, outputs it, and returns the unit
value of type unit as the result of the computation. On the other
hand, dealloc deallocates an input array, and its output is an
empty value. The operation lookup i extracts the i-th element of
the input array of type 'a larr and returns it with type 'a, while
outputting the unchanged array. Functions map and to_list also
correspond to Example 2.1 in a similar way.

Figure 2 shows the type signature for LinMonad. The types
’a lin and 'a data wrap a value with the constructors Lin__
and Data, respectively. Lin__ may be utilised to implement lin-
early typed APIs; however, it must not be used by the end users.*3

Function return is a “pure” command that does not change the
input value and outputs it as it is to the next command; hence, the
pre- and post-conditions have the same type 'pre. For coherence
with § 4, the result type of return is wrapped with the type con-
structor data, which is removed in the following bind (>>=) and
run operations.

The property that linear values are never discarded is guar-
anteed by the type of bind (and of run, which is shown later).
The bind operation roughly corresponds to the pipe mechanism
in UNIX shells. It applies the function on the right hand side (rhs)
to the result value of the command on the left hand side (lhs) and,
at the same time, passes the linear output value from the lhs to the

*3 However, within the framework described in § 3, it is not harmful to use
Lin__ since there are no means to take linear values out of monadic
values.

command obtained from the rhs. The type signature requires the
type constructor data to be removed from the type of the result
'a data in the lhs and also the output type 'mid of the lhs to be
matched with the input type of the rhs. Thus, if the rhs requires
its input to be empty while the lhs outputs a linear value of type
'a lin, it is statically detected as a type error. As a whole, the
composed monadic value takes an input of type 'pre required by
the lhs, outputs a value of type 'post from the rhs, and returns
the result of type 'b from the rhs.

The computation result of a monadic value can be bound to the
parameter of the function like in e1 >>= fun x -> e2, and can be
used in the subsequent computation.*4 An expression of the form
e1 >> e2 has almost the same behaviour as the bind operation,
except that it discards the result of the lhs. It could be written as
let m = e2 in e1 >>= fun _ -> m.*5

The other property of linearity, which stipulates that linear val-
ues are not duplicated, is guaranteed by the fact that the inputs
and outputs of commands are implicitly threaded by the bind op-
eration and are never bound to a variable.

The empty value is represented by the constructor Empty. The
commands are executed via the function run. The output type
empty in run ensures that the last command does not output a
linear value.

Example 3.1 (Array operations using a monad) The fol-
lowing program simulates Example 2.2 using the parameterised
monad.

val ex1: unit -> (empty,empty,unit data) monad
let ex1 () =
alloc [100; 200; 300] >>

map string_of_int >>

update 1 "Hello" >>

lookup 1 >>= fun x ->
dealloc >>

(print_endline x; return ())

let () = run ex1

In this example, the array generated by alloc is manipulated us-
ing map, update, and lookup, and then destructed by dealloc.
Overall, function ex1 returns a command with empty input and
output that operates on an array, as shown in Example 2.2.*6 □

3.2 Lenses focusing on multiple linear resources
We introduce a framework to handle multiple linear values si-

multaneously in LinMonad. For example, it allows to write oper-
ations analogous to the following:

let arr1', x1 = lookup i arr1 in
let arr2', x2 = lookup i arr2 in
x1 + x2

which compute the sum of the i-th elements of two linearly typed
arrays. The idea is to use a data structure called slot sequence
[6], [9], [10], which holds multiple linear resources, in the input
and output of commands in the parameterised monad. Lenses en-
able one to indirectly refer to linear resources while restricting

*4 The operator precedence is as follows: e1 >>= (fun x -> e2).
*5 The let-binding is required because OCaml is not pure, and the expres-

sion e2 may have side effects.
*6 Note that (print_endline x; return ()) discards the unit value
() returned by print_endline at the lhs of ; and returns a pure com-
mand that does nothing.

© 2014 Information Processing Society of Japan 3

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

type ('a, 'b, 'd1, 'd2) lens =
{get: 'd1 -> 'a; put: 'd1 -> 'b -> 'd2}

val _0 : ('a, 'b, 'a * 'xs, 'b * 'xs) lens
let _0 =
{get = (fun (a,_) -> a);
put = (fun (_,xs) b -> (b,xs))}

val _1 : ('a, 'b, 'x1 * ('a * 'xs),
'x1 * ('b * 'xs)) lens

let _1 =
{get=(fun(_,(a,_)) -> a);
put=(fun(x,(_,xs)) b -> x,(b,xs))}

val _2 : ('a, 'b, 'x1 * ('x2 * ('a * 'xs)),
'x1 * ('x2 * ('b * 'xs))) lens

let _2 =
{get=(fun(_,(_,(a,_))) -> a);
put=(fun(x,(y,(_,xs))) b -> x,(y,(b,xs)))}

val succ : ('a, 'b, 'xs, 'ys) lens
-> ('a, 'b, ('x * 'xs), ('x * 'ys)) lens

let succ l =
{get = (fun (_,xs) -> l.get xs);
put = (fun (x,xs) b -> (x, l.put xs b))}

Fig. 3 Lenses for manipulating slots

non-linear access to them as before, thereby guaranteeing linear-
ity.
3.2.1 Preliminaries

Slot sequences. A slot sequence holds multiple linear re-
sources. It is a data structure composed of pairs nested on the
right (x0,(x1,(x2, ...))). Although at any point there may
only be a finite number of linear resources available, it is useful to
be able to assume the existence of an infinite number of slots. In
particular, one can denote the absence of any linear resource by an
infinite sequence empty * (empty * (empty * ..)). There are
two ways in OCaml to write types with such an infinite structure.

(1) OCaml’s polymorphic variants or objects allow equi-
recursion on types [22]. By using a polymorphic variant
constructor `cons, we can write the infinite type
[`cons of empty * [`cons of empty * ..]]

as
[`cons of empty * 't] as 't

where T as 't is an equi-recursive type identical to
T [(T as ’t)/’t], where the type variable 't in T is replaced
by T as 't. Object types can also encode an infinite se-
quence as <cons : empty * 't> as 't.

(2) The -rectypes option of the OCaml compiler enables to
construct equi-recursive types through arbitrary type con-
structors so that empty * (empty * (empty * ..)) can be
written more directly as empty * 't as 't.

In this paper, we use the latter for simplicity, but our library ac-
tually uses the former. More generally, most programming lan-
guages do not provide equi-recursive types, but they can be mim-
icked using finite unrolling (§ 3.2.3).

Lenses. A lens [5] is an abstraction of bi-directional transfor-
mation in the context of bidirectional programming. It consists of
a transformation from one data structure (source) to another data
structure (view) and a backward transformation of the changes
made in the view into the source. In addition, Haskell’s lens li-
brary [14] and Pickering’s lenses [21] allow writing back values
of different types.

type all_empty = empty * 't as 't
val run':
(unit -> (all_empty , all_empty , 'a data) monad)
-> 'a

val (@>) : ('p, 'q, 'a) monad
-> ('p, 'q, 'pre, 'post) lens
-> ('pre, 'post, 'a) monad

Fig. 4 An operator for slot update in the LinMonad

Figure 3 shows the definition of lenses for slot manipulation.

• The lens is a pair of a view function get and a putback func-
tion put. The type parameters 'd1 and 'd2 represent the type
of the source to be referenced by the lens. The function get
returns the view of type 'a from the source 'd1. On the other
hand, the function put functionally updates the source 'd1 to
the type 'd2 by writing back a value of type 'b.

• Lenses enable to refer to arbitrary finite positions in a slot
sequence, with the linearity being enforced by the monad.
Lens _0 refers to the 0-th element*7 of a slot sequence, i.e. it
points to the lhs of a pair. Similarly, lenses _1 and _2 refer to
the first and second elements in a slot sequence, respectively.

• The third and subsequent elements in a slot sequence are ob-
tained by the function succ, which builds a new lens that
refers to the next element of an existing lens. For example,
lenses that refer to the first and second elements can also
be written as succ _0 and succ (succ _0), respectively.
However, because OCaml enforces the value restriction, the
type of such expressions becomes monomorphic and can-
not be used at multiple types. This can be avoided by using
GADTs, as shown in § 3.2.4.

Example 3.2 (Manipulating slots using lenses) The fol-
lowing example shows the intuitive behaviour of lenses focusing
on slot sequences. Let Empty be the constructor of type empty.
Then, the infinite slot sequence of Empty which has type
empty * 't as 't is defined as follows:

val all_emp : empty * 't as 't
let rec all_emp = Empty, all_emp

This is a cyclic list having Empty as its head. The following code
uses lens _0 to assign an array arr : int larr to the 0-th posi-
tion of the empty slot sequence:

val slots1 : int larr * (empty * 't as 't)
let slots1 = _0.put all_emp arr

The composite lens succ (succ _0) in the following code as-
signs an array arr1 of type string larr to the second position
in the sequence.

val slots2 : int larr * (empty * (string larr*
(empty * 't as 't)))

let slots2 = (succ (succ _0)).put slots1 arr1

□
3.2.2 Lenses manipulating linear values in the monad

In Figure 4, we present the type of slot sequences, the function
run' executing the command, and the operator @> which updates

*7 We count the first element of the slot sequence as the 0-th slot.

© 2014 Information Processing Society of Japan 4

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

an element in the slot sequence using a command. Expression
m @> l executes the computation m in the slot referenced by lens
l. The type signature reads as follows:

• From the pre-condition 'pre of m @> l, a linear resource of
type 'p is obtained using lens l.

• The resource 'p is consumed in the monadic computation m,
and the post-condition 'q is produced and the result value 'a
is returned.

• Again by lens l, 'q is written back to 'post and it becomes
the post-condition of m @> l.

The following example handles multiple linear resources using
lenses. We introduce the functions iteriM and mapiM as variants
of List.iter and List.map in OCaml, respectively. For instance,
iteriM f l executes the command f i ei for each element of l,
where i is the position of ei in l.

Example 3.3 (Handling multiple linear resources (1)) To
show an example of accessing multiple resources, we consider
calculating the sum of two arrays. The following function
returns an array 123, 234, 345 by calculating the sum of each
element of the same index in two arrays: 23, 34, 45 and
100, 200, 300, respectively.

val ex2 : unit ->
(all_empty ,all_empty ,int list data) monad

let ex2 () =
alloc [23; 34; 45] @> _0 >>

alloc [100; 200; 300] @> _1 >>

iteriM (fun i x ->
lookup i @> _1 >>= fun y ->
update i (x + y) @> _1)

_0 >>

to_list @> _1 >>= fun xs ->
dealloc @> _0 >>

dealloc @> _1 >>

return xs

By using the @> operator, we can assign the two newly allocated
arrays to the 0-th and first slots, respectively. Then, the function
iteriM is used to update the first array with the sum of each el-
ement at index i from the two arrays, and, finally, the first array
is converted to a list. The anonymous function fun i x -> . . .
passed to iteriM reads the i-th element of the first array by call-
ing lookup i @> _1 and writes back the sum by calling update
i (x + y) @> _1. □

Next is an example that updates the type of array elements.
Example 3.4 (Handling multiple linear resources (2)) The

following program converts the array 100, 200, 300 to an array
of strings and then concatenates "abc", "def", "ghi" to each
element to obtain the array "abc123", "def234", "ghi345".

val ex3 : unit ->
(all_empty ,all_empty ,string list data) monad

let ex3 () =
alloc [100; 200; 300] @> _0 >>

alloc ["abc"; "def"; "ghi"] @> _1 >>

mapiM (fun i x ->
lookup i @> _1 >>= fun s ->
return (s ˆ string_of_int x)) _0 >>

to_list @> _0 >>= fun xs ->
dealloc @> _1 >>

dealloc @> _0 >>

return xs

val iteriM :
(int -> 'a -> ('pre, 'pre, unit data) monad)
-> ('a larr, 'a larr, 'pre, 'pre) lens
-> ('pre, 'pre, unit data) monad

val mapiM :
(int -> 'a -> ('pre, 'pre, 'b data) monad)
-> ('a larr, 'b larr, 'pre, 'post) lens
-> ('pre, 'post, unit data) monad

Fig. 5 Signatures for iteriM and mapM

□
Figure 5 shows the type signatures of iteriM and mapiM, which

represent the following linearity constraints:

• In iteriM f l, it is not possible for the first argument f to
update the type of the array elements since it is called many
times during the iteration. For this reason, the pre- and post-
conditions of the type of the monadic value are both 'pre.*8

The second argument l is a lens referring to an array to be it-
erated. Since iteriM does not update the type, the third and
fourth type arguments of the lens are identical to the first type
argument 'a larr and to the second type argument 'pre, re-
spectively.

• The first argument f of mapiM f l does not update the type
as well, but it returns the converted element 'b data as the
result value of the monad. On the other hand, the second ar-
gument lens l referring to the array indicates that this func-
tion updates the value of the linear type 'a larr and re-
turns a new array 'b larr. Reflecting this update, the post-
condition type of the command is 'post, which is the up-
dated source type by the lens.

3.2.3 Typing slots without equi-recursive types
We show how the slot sequences can be represented in pro-

gramming languages without equi-recursive types. For this, we
introduce the functions extend and shrink which expand or
shrink the slot sequence by one, respectively.

val extend : ('pre, empty * 'pre, unit data) monad
val shrink : (empty * 'pre, 'pre, unit data) monad

Functions extend and shrink enable to handle as many slots as
required.

Example 3.5 (Expanding/shrinking of a sequence)
Function example3 in Example 3.4 can be typed and executed
without any infinite slot sequence by using extend to expand the
slot sequence by two. Since the output of run must be empty, the
slot sequence is shrunk at the end using shrink.

val ex4 : unit ->
(empty,empty,string list data) monad

let ex4 () =
extend >>

extend >>

example3 () >>= fun x ->
shrink >>

shrink >>

return x

let () = run ex4

□

*8 Unlike with function return, the command returned by f may include
side effects. The type signature only states that f does not update the
types.

© 2014 Information Processing Society of Japan 5

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

3.2.4 Polymorphic lenses using GADTs
As mentioned in § 3.2.1, lenses like succ _0 are subject to the

value restriction and cannot have a polymorphic type. For this
reason, to manipulate data of different types, we need to locally
combine lenses like succ (succ _0), which is cumbersome.

Lenses defined using generalised algebraic data types
(GADTs) [7] constructors as in Figure 6 can avoid the value
restriction, keeping such combinations polymorphic.
Fst is a lens that refers to the 0-th slot, and Next l is a lens

that refers to the next element of l which is equivalent to succ l.
Any (get, put) is a lens consisting of an arbitrary view function
get and putback function put. _0, _1, _2, _3 are defined us-
ing constructors, and therefore, they are not subject to the value
restriction and are polymorphic.
lget and lput are the view operation and putback operation,

respectively. Here, type a xs, etc. in type annotations are lo-
cally abstract types and represent types to be refined by pattern
matching against GADT constructors.

3.3 Implementations of the monad and APIs
LinMonad as a state monad. Figure 7 shows an implemen-

tation of LinMonad (Figure 2) and slot-based operations based
on the state monad [29]. The type ('pre, 'post, 'a) monad
denotes a state monad with state changing from 'pre to 'post,
implemented as the function type 'pre -> 'post * 'a.

Monadic operations return, >>=, >>, run are standard;
however, they wrap the result value with a Data constructor. The
function run explicitly handles the state value Empty to ensure
that the pre- and post-conditions will be empty. Here, run' is
almost the same except that it uses all_emp instead of Empty.
The operator @> executes the monad value m in the environment
obtained by applying the lens l to pre, and it updates the slot
sequence with that lens.

Implementing a linearly typed API When implementing a
linearly typed API, one works “under the hood”, using the vanilla
OCaml type system, which doesn’t ensure or exploit linearity.
This requires techniques specialised to the domains and proper-
ties to be guaranteed. For example, in an efficient array imple-
mentation, unsafe operations are required to implement updates
that change the type of the array.

Figure 8 shows an implementation of linearly typed arrays
with type update. The implementation employs a few tricks to
work around the specialised (unboxed) memory representation
that OCaml uses for floating-point numbers [15]. The follow-
ing type-unsafe functions are used to encode and decode array
elements, and to convert the type of arrays.

val Obj.repr : 'a -> Obj.t
val Obj.obj : Obj.t -> 'a
val Obj.magic : 'a -> 'b

Here, type Obj.t is used to embed arbitrary types.
The internal representation of OCaml arrays is dynamically de-

termined by the value passed to the initialisation function. To
avoid creating a specialised float array, alloc initialises an ar-
ray with a value of 0 of type int before copying the contents of
the list. Looking up an array (lookup and map) restores the ac-
tual type from Obj.t type by using Obj.obj. Updating an array

(update and map) stores the elements converted to Obj.t by using
Obj.repr. Function to_list converts a list of type Obj.t list
to its true type by using Obj.magic.

Since each function in the API handles arrays linearly and does
not add any reference (e.g. assignment to a global variable), this
API guarantees linear access to all arrays.

4. A pattern matching extension
In this section, we show a syntax extension of pattern matching

on linearly typed structured data. Pattern matching is a powerful
feature of functional programming with which one can express
a variety of algorithms when used in combination with recursive
data structures. In particular, linearly typed lists are important
because they allow to dynamically handle an arbitrary number of
linear resources.

4.1 Linearly typed patterns and a revised array API
To enable pattern matching against linearly typed values, we

extend the type of the result of the parameterised monad to in-
clude linear types as in ('pre, 'post, 'a lin) monad.

In addition, we introduce a syntax extension let%lin for pat-
tern matching against such linear result values.*9 The expression
let%lin pat = e1 in e2 executes e1, binds its result to pattern
pat, and then executes e2. Pattern pat is extended to include lens
pattern #l, which assigns the matched linear value into an empty
slot referred to by l.*10

Here, we show an example of array manipulation using lens
patterns. To compare programming with lens patterns with the
style of § 3, we first introduce a new array API with linearly typed
results of type ('pre, 'post, 'a lin) monad.

Example 4.1 (A revised array API) Figure 9 introduces a
revised version of the array API. We summarise the changes from
Figure 1 in § 3 as follows:
• Each function originally returning an array as output type

now has a return type containing a linear array. *11

• Functions other than alloc take as a parameter a lens of type
('a larr, empty, 'pre, 'post) lens, which reflects the
fact that they consume an array referred to by this lens. In
other words, they consume the array 'a larr in slot sequence
'pre and then the slot is emptied and written back to 'post.
The return type is the ('pre, 'post, τ) monad, where the
pre-condition 'pre and the post-condition 'post are the same
as those manipulated by the lens.

• Unlimited (non-linear) types 'a are wrapped as 'a data to
separate them from linear types. For example, the result of
lookup is a pair type ('a larr * 'a data) lin of a linear
array and the element found in that array.

□
Programming with lens patterns closely resembles that in § 2,

which directly handles linear values.
Example 4.2 (Lens patterns matched against arrays)

*9 Here, %lin denotes a syntax extension point in OCaml and the prepro-
cessor expands it into a vanilla OCaml syntax tree without the extension.

*10 We replace the pattern #t, which is originally the syntax for matching
against all values of the polymorphic variant type t.

*11 Note that 'a larr is an alias for 'a array lin (see Figure 1).

© 2014 Information Processing Society of Japan 6

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

type (_,_,_,_) lens =
| Fst : ('a,'b,'a * 'xs, 'b * 'xs) lens
| Next : ('a,'b,'xs,'ys) lens -> ('a,'b,'x * 'xs, 'x * 'ys) lens
| Any : ('d1 -> 'a) * ('d1 -> 'b -> 'd2) -> ('a, 'b, 'd1, 'd2) lens

val lget : ('a, 'b, 'xs, 'ys) lens -> 'xs -> 'a
let rec lget : type a b xs ys. (a, b, xs, ys) lens -> xs -> a = fun ln xs ->
match ln,xs with
| Fst, (a,_) -> a

| Next ln', (_,xs') -> lget ln' xs'
| Any (get, _), xs -> get xs

val lput : ('a, 'b, 'xs, 'ys) lens -> 'xs -> 'b -> 'ys
let rec lput : type a b xs ys. (a,b,xs,ys) lens -> xs -> b -> ys = fun ln xs b ->
match ln, xs with
| Fst, (_, xs) -> (b, xs)

| Next ln', (a, xs') -> (a, lput ln' xs' b)
| Any (_, put), xs -> put xs b

let _0 = Fst;; let _1 = Next _0;; let _2 = Next _1;; let _3 = Next _2

Fig. 6 A GADT-based construction of lenses

type ('pre, 'post, 'a) monad= 'pre -> 'post * 'a
let return a = fun pre -> pre, Data a
let m >>= f = fun pre ->
match m pre with
| mid, Data a -> f a mid

let m1 >> m2 = fun pre ->
match m1 pre with
| mid, Data _ -> m2 mid

let run f =
match f () Empty with
| Empty, Data a -> a

let run' f =

match f () all_emp with
| _, Data a -> a

let (@>) m l = fun pre ->
match m (l.get pre) with
| q, d -> l.put pre q, d

Fig. 7 An implementation of LinMonad

type 'a larr = Obj.t array lin
let alloc xs = fun Empty ->
let arr =
Array.make (List.length l) (Obj.repr 0) in

List.iteri (fun i a ->
arr.(i) <- (Obj.repr a)) xs;

Lin__ arr, Data ()

let dealloc arr = Empty, ()
let lookup i = fun ((Lin__ arr) as pre) ->
pre, Data (Obj.obj arr.(i))

let update i a = fun ((Lin__ arr) as pre) ->
arr.(i) <- (Obj.repr a);

pre, Data ()

let map f = fun (Lin__ arr) ->
Array.iteri (fun i a ->
arr.(i) <- (Obj.repr (f (Obj.obj a))))

arr;

Lin__ arr, Data ()

let to_list = fun ((Lin__ arr) as pre) ->
pre, Data (Obj.magic (Array.to_list arr))

Fig. 8 An implementation of linearly typed arrays

Using lens patterns and the array API in Figure 9, we can write
the array operation of Example 2.2 as follows:

val ex1' : unit ->
(all_empty , all_empty , unit data) monad

let ex1' () =
(* Variable arr referring to the 0-th slot *)

val alloc : 'a list ->
('pre, 'pre, 'a larr) monad

let alloc xs = fun pre ->
pre, Lin__ (Array.of_list pre)

val dealloc :
('a larr, empty, 'pre, 'post) lens ->
('pre, 'post, unit data) monad

let dealloc l = fun pre ->
l.put post Empty, Data ()

val lookup : int ->
('a larr, empty, 'pre, 'post) lens ->
('pre, 'post, ('a larr * 'a data) lin) monad

let lookup i l = fun pre ->
let ((Lin__ arr) as arr0) = l.get pre in
l.put pre Empty, Lin__ (arr0, Data(arr.(i)))

val update : int -> 'a ->
('a larr, empty, 'pre, 'post) lens ->
('pre, 'post, 'a larr) monad

let update i a l = fun pre ->
let ((Lin__ arr) as arr0) = l.get pre in
arr.(i) <- a;

l.put pre Empty, arr0

val map : ('a -> 'b) ->
('a larr, empty, 'pre, 'post) lens ->
('pre, 'post, 'b larr) monad

let map f l = fun pre ->
let (Lin__ arr) = l.get pre in
l.put pre Empty, Lin__ (Array.map f arr)

Fig. 9 A linearly typed array API for lens patterns

let arr = _0 in
let%lin #arr = alloc [100; 200; 300] in
let%lin #arr = map string_of_int arr in
let%lin #arr = update 1 "Hello" arr in
let%lin #arr, x = lookup 1 arr in
dealloc arr

It can be seen that the only difference from Example 2.2 above is
the extension point %lin and the symbol # for lens patterns. □

Multiple arrays can also be intuitively manipulated by lens pat-
terns.

Example 4.3 (Handling multiple arrays with lens patterns)
Using lens patterns, we can write the program of Example 3.4 as
follows:

© 2014 Information Processing Society of Japan 7

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

val ex4' : unit ->
(all_empty ,all_empty ,string list data) monad

let ex4' () =
let s = _0 and t = _1 in
let%lin #s = alloc [100; 200; 300] in
let%lin #t = alloc ["abc"; "def"; "ghi"] in
let%lin #s =
mapiM (fun i x ->

let%lin #t, str = lookup i t in
return (str ˆ string_of_int x)) s in

let%lin #s, xs = to_list s in
dealloc t >>

dealloc s >>

return xs

□

4.2 A semantics for lens patterns
We give the semantics of the lens pattern and %lin by macro

expansion. First, let us consider the case where %lin contains a
lens pattern only and generalise it for structured patterns.

Expressions with lens patterns
let%lin #l = e1 in e2

are treated as an abbreviation of the following expression:
e1 >>- fun%lin #l -> e2

Here, >>- is a variant of the bind function, which requires a
fun%lin function on its right-hand side.

The function fun%lin #l -> e2 is expanded to

Bind__ (fun tmp -> _put l tmp >> e2)

by the preprocessor, where tmp is a fresh variable. Bind__ is a
constructor that distinguishes a fun%lin function at the type level
and should not be used by programmers. By this, the rhs of bind
is statically enforced to be a %lin function. The expression _put
l v is a command to store the value v in the slot pointed to by lens
l. The type of the syntax extension %lin has the following form:

(fun%lin #l -> e2) :

(α lin -> (pre, post, β) monad) bind

where α, pre, post, and β are determined by the type of lens l and
by expression e2. For example, an expression with lens _0 would
have the following type:

(fun%lin #_0 -> return ()) :
('a lin ->
(empty * 'pre, 'a lin * 'pre, unit data)
monad) bind

This function takes a linear value and returns a command that
stores it in the 0-th slot.

As a whole, the syntax extension let%lin #l = e1 in e2 is ex-
panded to e1 >>- Bind__(fun tmp -> _put l tmp >> e2). Be-
cause the variable tmp bound to the linear result of e1 is immedi-
ately assigned to slot l, and because tmp does not occur anywhere
else, linearity is maintained.

Figure 10 shows the signature and implementation of the aux-
iliary functions used by %lin. Operator >>- is a specialised bind
function that takes a function wrapped by Bind__ on its rhs. Func-
tion _put outputs a modified slot sequence that stores a linear
value in the input pre.

Linear and unlimited variable patterns. We introduce vari-
able patterns to handle mixed linear and unlimited values, such
as the result of lookup. Special care is needed for variable pat-
terns as there is a risk that a linear value of type α lin might be

type 'f bind = Bind__ of 'f

val (>>-) : ('pre, 'mid, 'a lin) monad
-> ('a lin -> ('mid, 'post, 'b) monad) bind
-> ('pre, 'post, 'b) monad

let (>>-) m (Bind__ f) = fun pre ->
match m pre with
| mid, a -> f a mid

val _put : (empty,'a lin,'pre,'post) lens
-> 'a lin -> ('pre,'post,unit data) monad

let _put l a = fun pre ->
l.put pre a, Data ()

Fig. 10 Functions for the %lin syntax extension

bound to a variable pattern that has a polymorphic type. Here,
we assume that the top level of the pattern of fun%lin is a linear
value and that the unlimited value appearing within it is wrapped
with Data. We also assume that no linear value appears inside
an unlimited value. Under these assumptions, the preprocessor
checks that variable patterns never appear at the top level and that
they are wrapped by a Data constructor, and if these conditions
are violated, the preprocessor will report a syntax error, ensuring
that variable patterns do not bind linear values.

Omission of Data in variable patterns. Because it is cum-
bersome to always wrap a variable pattern with Data, we use the
following rules for pattern expansion:

• Variable patterns are allowed inside the Data constructor,
like Data x.

• Variable patterns outside Data are implicitly wrapped by
Data to have type τ data.

This makes it possible to omit the Data constructor, e.g. the
pattern (#arr, x) binds the result of lookup which is of type
(’a larr * ’a data), while structured pattern matching for
unlimited values like (#arr, Data (Some x)), which is of type
('a larr * 'a option data), becomes possible by writing
Data explicitly.

We further introduce syntax extensions match%lin and
function%lin, which extend match and function with lens pat-
terns, respectively. We summarise the expansion of each syntax
extension as follows:

• fun%lin pat -> e expands to
Bind__ (fun conv(pat) -> puts(pat) >> e).

Here, conv(pat) is a syntactic function for converting the pat-
tern pat, which is given later. puts(pat) is a function that
generates a command
_put l1 tmp1 >> · · · >> _put ln tmpn

for the lens l1, . . . , ln appearing in pat, where the variables
tmp1, . . . , tmpn are freshly generated by conv(pat).

• function%lin case1 | · · · | casen expands each clause
casei of the form pati -> ei as in fun%lin.

• let%lin pat = e1 in e2 is expanded similarly to the case
of e1 >>- fun%lin pat e2.

• match%lin e with case1 | · · · | casen is expanded simi-
larly to e >>- function%lin case1 | · · · | casen.

© 2014 Information Processing Society of Japan 8

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

let rec _traverse p =
match p with
| is a lens pattern #l
-> Generate a fresh variable tmp;
Record a pair of lens l and variable tmp;
tmp

| is a variable pattern var
-> Data var
| is a constructor pattern C without parameters

-> C

| is a constructor pattern with parameters
C(p1, p2 ,...)

-> C(_traverse p1, _traverse p2, ...)

| _

-> report an error

let conv (p : pattern) : pattern =
if p is a lens pattern then
_traverse p

else
Lin__ (_traverse p)
(*wrap it in the linear type constructor*)

Fig. 11 A translation for %lin-patterns

type 'a linlist = 'a linlist_ lin
and 'a linlist_ =

Cons of 'a data * 'a linlist | Nil

Fig. 12 A linearly typed list

Figure 11 shows a pseudo-OCaml code for expanding %lin
patterns. Function _traverse converts pattern p recursively. In
the case of a lens pattern, it replaces the pattern with a fresh vari-
able and records the pair of the lens and the variable for later
insertion of _put. On the other hand, in the case of a vari-
able pattern x, it is expanded to pattern Data x of type 'a data.
For a constructor pattern, it converts the argument pattern recur-
sively. An error occurs for patterns leaking linear values, e.g.
as-patterns.

Type safety in user programs. In summary, by using this
library and accompanying syntax extensions, the programmer
is guaranteed that values of type lin are used linearly, pro-
vided she/he does not directly use the constructors Lin__ and
Bind__.*12 Specifically, linear values are always stored in the
slot sequence in the monad, and although one can create a func-
tion that takes a parameter of type lin in the fun%lin syntax,
the function only accepts a linear value directly from the slot se-
quence via the monad and its linear components are immediately
put back in the slot sequence.

4.3 Linearly typed lists
As an example of effective usage for pattern matching against

linearly typed structured data, we introduce a linearly typed list
type in Figure 12. Furthermore, through this example, we in-
troduce the functions get_lin, put_lin, and put_linval, which
directly manipulate the slot pointed to by the lens, and the linear
value constructor syntax to construct linear data.

Example 4.4 (Iterating over linearly typed lists) The fol-
lowing function (iter0 f) applies f to consume all elements in
the list assigned to slot _0. Here, get_lin l takes a linear value
from the slot referred to by l and then empties the slot.

*12 Although lin and bind should be abstract types, they could not be hid-
den because the code generated by the syntax extension will use them.

val iter0 : ('a -> 'b) ->
('a linlist * 'xs, empty * 'xs, unit data) monad

let rec iter0 f =
match%lin get_lin _0 with
| Cons(x, #_0) -> f x; iter0 f

| Nil -> return ()

□
Although iter0 is simple, it is not really flexible because the slot
is fixed to _0. However, taking a lens parameter like iter f l
does not work.

Example 4.5 (A type error due to a monomorphic parameter)
The following function (iter_fail) is not typeable:

let rec iter_fail f l =
match%lin get_lin l with
| Cons(x, #l) -> f x; iter_fail f l

| Nil -> return ()

This is because get_lin fixes the type of lens to
('a linlist, empty, 'pre, 'post) lens and cannot be
used with type (empty, 'a linlist, 'post, 'pre) lens, as
required for a lens pattern allocating to the empty slot. Passing
multiple lenses with different usages will work as follows:

val iter' : ('a -> 'b) ->
('a linlist, empty, 'pre, 'post) lens ->
(empty, 'a linlist, 'post, 'pre) lens ->
('pre, 'post, unit data) monad

let rec iter' f l1 l2 =
match%lin get_lin l1 with
| Cons(x, #l2) -> f x; iter' f l1 l2
| Nil -> return ()

Here, iter' can accept the same polymorphic lens in its two ar-
guments, like iter' f _0 _0. □

Linear value constructor. To define a map function on lin-
early typed lists, we need a means to construct a linear value. We
introduce the syntax [%linret c] for this:

• [%linret c] is a monadic value with result value c.

• In [%linret e], only nested application of constructors C(
c1, . . ., cn) or lens references are allowed in e.

• The lens reference !! l returns the value of the non-empty
slot referred to by lens l.

• [%linret e] empties the slots referred to by the lens refer-
ences !! l1, . . . , !! ln occurring in e.

Using these, we can define a map function on lists.
Example 4.6 (map on linearly typed lists) The function

map0 f consumes the linearly typed list assigned to _0 and
produces a new list in _0 that is obtained by applying f to each
element in the given list.

val map0 : ('a -> 'b) ->
('a linlist * 'xs, 'b linlist * 'xs, unit data)
monad

let rec map0 f =
match%lin get_lin _0 with
| Cons(x, #_0) ->

map0 f >>

put_lin _0 [%linret Cons(Data(f x), !!_0)]
| Nil -> put_linval _0 Nil

Here, put_lin l m executes m and assigns the resulting value to
the slot referred to by lens l. Expression put_linval l v assigns

© 2014 Information Processing Society of Japan 9

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

val get_lin :
('a lin, empty, 'pre, 'post) lens ->
('pre,'post,'a lin) monad

let get_lin l = fun pre ->
l.put pre Empty, l.get pre

val put_lin :
(empty,'a lin,'mid,'post) lens ->
('pre,'mid,'a lin) monad ->
('pre,'post,unit data) monad

let put_lin l m = fun pre ->
match m pre with
| mid, a -> l.put mid a, Data ()

val put_linval :
(empty,'a lin,'pre,'post) lens ->
'a -> ('pre,'post,unit data) monad

let put_linval l a = fun pre ->
l.put pre a, Data ()

Fig. 13 APIs for direct slot access

the value v to the slot referred to by l. □
Directly handling values in slots Figure 13 shows the sig-

natures and implementations of the functions get_lin, put_lin,
and put_linval.

Example 4.7 (Tail-recursive map) List.rev_map in the
OCaml standard library is a tail-recursive variant of map in which
the call stack does not grow linearly. The following function
(rev_map f) is analogous to List.rev_map and operates on the
linearly typed list assigned to slot _0, building a new list at _1 by
applying f in the reverse order.

val rev_map : ('a -> 'b) ->
('a linlist * all_empty ,
empty * ('b linlist * all_empty),
unit data) monad

let rev_map f =
let rec loop () =
match%lin get_lin _0 with
| Cons(x, #_0) ->

put_lin _1

[%linret Cons(Data(f x), !!_1)] >>
loop ()

| Nil -> return ()

in
put_linval _1 Nil >>

loop ()

□
Example 4.8 (Generalising map (1)) The following function

map' generalises map0 in Example 4.6 to take a lens parameter
that refers to the list it operates on.

val map' : ('a -> 'a) ->
('a linlist, empty, 'pre, 'mid) lens ->
(empty, 'a linlist, 'mid, 'pre) lens ->
('pre, 'pre, unit data) monad

let rec map' f s1 s2 =
match%lin get_lin s1 with
| Cons(x, #s2) ->

map' f s1 s2 >>
put_lin s2

[%linret Cons(Data(f x), !! s1)]
| Nil -> put_linval s2 Nil

Unfortunately, map' cannot change the type of elements in the
list. This is because, although we use two lenses s1 and s2, one
for extracting the source list from a slot and the other for assign-
ing the destination list to another slot, they are shared for both the
source type and the destination type. □

Example 4.9 (Generalising map (2)) By supplying different
lenses for the source list and the destination list, we can define
a generalised map that can take different types for the source and
the destination.

val map : ('a -> 'b) ->
('a linlist, empty, 'pre, 'mid) lens ->
(empty, 'a linlist, 'mid, 'pre) lens ->
('b linlist, empty, 'post, 'mid) lens ->
(empty, 'b linlist, 'mid, 'post) lens ->
('pre, 'post, unit data) monad

let rec map f s1 s2 s3 s4 =
match%lin get_lin s1 with
| Cons(x, #s2) ->

map f s1 s2 s3 s4 >>

put_lin s4 [%linret Cons(Data (f x), !! s3)]
| Nil -> put_linval s4 Nil

□

5. An encoding of session types
For a more practical example of linearly typed programming,

we introduce session types and show a solution to the Santa Claus
problem by utilising pattern matching on linearly typed structured
values.

5.1 Session types
Session types [8] can represent the communication protocol

realised by a program and statically guarantee that communica-
tion proceeds and terminates safely. As with linear types, session
types require linearity to track the number of times a session is
used.

Example 5.1 (An addition server) Session-typed commu-
nication starts by establishing a session on a channel. The
following program is a server that calculates the sum of two
integers.

val ex5 : unit ->
(((((close , int) send, int) recv, int) recv lin
* all_empty ,

all_empty ,

unit session) monad

let ex5 () =
let%lin #_0, x = receive _0 in
let%lin #_0, y = receive _0 in
let%lin #_0 = send _0 (x+y) in
close _0

This program operates on the session assigned to slot _0, receiv-
ing two integers and sending their sum before terminating. Ses-
sion types reflect such communication structure in types. Type
(θ, τ) recv denotes receiving a value of type τ before behav-
ing as session θ, (θ, τ) send denotes sending a value of type τ
before behaving as session θ, and close denotes the end of a ses-
sion. This addition service has the following type at slot _0:*13

(((close, int) send, int) recv, int) recv lin

□
Figure 14 shows the signature of a communication API based

on session types. The type (θ1, θ2) channel is the type of a
channel used as entry point of a session. A communication peer
can wait for a peer with accept, and a session is established when

*13 This type represents communication steps in right-to-left order owing to
the postfix syntax of OCaml types.

© 2014 Information Processing Society of Japan 10

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

type ('s, 'v) send type ('s, 'v) recv
type close
type ('s, 'c) channel

val accept : ('s, 'c) channel ->
('pre, 'pre, 's lin) monad

val request : ('s, 'c) channel ->
('pre, 'pre, 'c lin) monad

val send :
(('s, 'v) send lin, empty, 'pre, 'post) lens
-> 'v -> ('pre, 'post, 's lin) monad

val receive :
(('s, 'v) recv lin, empty, 'pre, 'post) lens
-> ('pre, 'post, ('s lin * 'v data) lin) monad

val close :
(close lin, empty, 'pre, 'post) lens
-> ('pre, 'post, unit data) monad

Fig. 14 Communication API with session types

val s2c : ('s * 'c) channel -> (('s, 'v) send * ('c
, 'v) recv) channel

val c2s : ('s * 'c) channel -> (('s, 'v) recv * ('c
, 'v) send) channel

val finish : (close * close) channel

Fig. 15 The channel creation API for ensuring duality

a peer makes a connection request by request. Type θ1 is the ses-
sion that the accepting side (i.e. the server) must follow, whereas
θ2 is the one that the requesting side (client) must follow. In ses-
sion type theory, if θ1 and θ2 are dual, one can ensure that the
communication on that channel will be consistent (i.e. no dead-
lock may occur and the types of messages at each peer coincide).
The duality on a channel can be established by constructing it
using the API in Figure 15. For example, s2c finish of type
((close, 'v) send * (close, 'v) recv) channel generates
a channel that initially sends a value from the server to the client
and then terminates.

5.2 A solution to the Santa Claus problem
The Santa Claus problem [2], [27] is a problem in concurrent

programming proposed by Trono, and it has served as a bench-
mark for concurrent features in various programming languages
[18]. We quote the problem from [27]:

Santa Claus sleeps in his shop up at the North Pole,
and can only be wakened by either all nine reindeers be-
ing back from their year long vacation on the beaches
of some tropical island in the South Pacific, or by some
elves who are having some difficulties making the toys.
[...] the elves visit Santa in a group of three. If Santa
wakes up to find three elves waiting at his shop’s door,
along with the last reindeer having come back from the
tropics, Santa has decided that the elves can wait until
after Christmas, because it is more important to get his
sleigh ready as soon as possible. [...]

Modelling. We model the Santa Claus problem as follows.
Santa Claus is waiting in the main thread by using accept on a
channel available to the reindeers and elves. We assign each rein-
deer and elf a thread and let them establish a session with Santa by
using request at a random rate. Santa will continue to communi-

type 'a slist_ = SCons of 'a lin * 'a slist | SNil
and 'a slist = 'a slist_ lin

val iter : int ->
('a slist, empty, 'pre, empty*'mid0) lens ->
(empty, 'a slist, 'a lin*'mid0, 'mid) lens ->
(empty, 'a slist, empty*'mid0, 'pre) lens ->
(unit -> ('mid, 'pre, unit data) monad) ->
('pre, 'pre, unit data) monad
let rec iter i l1 l2 l3 f =
if i=0 then
return ()

else
match%lin get_lin l1 with
| SCons(#_0, #l2) ->

f () >>

iter (i-1) l1 l2 l3 f

| SNil ->

put_linval l3 SNil

Fig. 16 Iteration on a list of sessions

cate with all reindeers and finish the sessions when the number of
established sessions with reindeers reaches nine. Similarly, Santa
will finish the session with the elves when the number of their
established sessions reaches three.

List of sessions. The sessions with reindeers and elves are
stored in two linearly typed lists held by Santa. As a result, we can
dynamically increase or decrease the number of sessions without
losing linearity. Santa processes all sessions in a list at once using
the function iter.

Figure 16 shows the linearly typed list in this example. The
type θ slist represents a list of sessions. Although similar to
the linearly typed list in Figure 12, type slist differs from it in
that it holds linearly typed content of type θ lin. Function iter
is only used in the form iter i l l l f. It is a function that
passes the first i number of elements in the list referred to by lens
l to function f. As we have seen in Examples 4.5, 4.8 and 4.9, it
needs three parameters to refer to the same slot owing to the lack
of polymorphism.

Figure 17 shows the Santa part of the solution to the problem
(the elf and reindeer parts are relatively easy). Type kind is used
to identify whether a peer is an elf or a reindeer. Lens _0 is used
to temporarily store the session with reindeers or elves, and it is
also used as a ‘working slot’ for iter. Lenses _1 and _2 store the
lists for elves and reindeers, and we give them the aliases e and
r, respectively.

First, Santa assigns empty lists to both e and r, and enters
the loop. In the loop, Santa waits for a session by accept and
receives the kind of the peer. If the peer is an elf, he stores the
rest of the session in e and increases the count of the number of
elves ecount. Similarly, if the peer is a reindeer, he stores the
session in r and increases rcount. When either count reaches its
limit, Santa sends the string "Let's deliver!" if there are nine
reindeers or the string "Make a new toy!" if there are three or
more elves, and then terminates the sessions.

6. Related works
A categorical framework for linear types in a parameterised

monad was introduced by Atkey [1]. To the authors’ knowledge,
Safeio, proposed in the post to the OCaml mailing list by Gar-

© 2014 Information Processing Society of Japan 11

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

type kind = Elf | Reindeer
type santa_ch =
(((close, string) send, kind) recv *

((close, string) recv, kind) send)

channel

let e = _1 and r = _2

val loop : santa_ch -> (int * int) ->
(empty * ((string, close) send slist *

((string, close) send slist * _)),

_, _) monad

let rec loop ch (ecount,rcount) =
let%lin #_0 = accept ch in
(match%lin receive _0 with
| #_0, Elf ->

put_lin e [%linret SCons(!!_0, !!e)] >>
return (ecount+1, rcount)

| #_0, Reindeer ->

put_lin r [%linret SCons(!!_0, !!r)] >>
return (ecount, rcount+1))

>>= fun (ecount, rcount) ->
if rcount=9 then
iter 9 r r r (fun () ->
let%lin #_0 = send _0 "Let's deliver!"
in close _0) >>

loop ch (ecount ,0)

else if ecount=3 then
iter 3 e e e (fun () ->
let%lin #_0 = send _0 "Make a new toy!"
in close _0) >>

loop ch (ecount -3,rcount)

else
loop ch (ecount,rcount)

val santa : santa_ch -> (all_empty ,_,_) monad
let santa ch =
put_linval e SNil >>

put_linval r SNil >>

loop ch (0,0)

Fig. 17 A solution for the Santa Claus problem using lists of sessions

rigue [6], is the first encoding of linearly typed resources by a
parameterised monad in OCaml, and it is mostly reproduced in
§ 3 of this paper.

6.1 Linear types in Haskell
Embedding based on De Bruijn indices. Similar in spirit

to linocaml, Kiselyov’s finally tagless interpreters [13] are a
technique for embedding a typed language into Haskell, and he
showed an embedding of the typed lambda calculus and linear
lambda calculus. For example, the function λx.λy.x + y, which
calculates the sum of two linearly typed integers, can be written
as lam (lam (add (s z) z)) by his technique. However, since
de Bruiijn indices use different numbers to represent the same
variable, it is difficult for humans to grasp the binding structure
of the program. Kiselyov also uses a parameterised monad as a
basic technique for static typing, and his framework allows λ ab-
straction, with the typing context growing when lambda abstrac-
tions are nested. He uses Haskell type classes to encode lambda
abstractions.

Embedding based on HOAS. Polakow [24] encoded linear
lambda calculus using Haskell’s type classes and functional de-
pendencies. Since his technique offers a direct embedding based
on HOAS [20], it does not need slot numberings as in this paper,
and it avoids the readability problems of de Bruijn indices. The

technique resembles Kiselyov’s; however, it differs from it in the
representation of pre- and post-conditions, having only flags in-
dicating whether a variable is used. Paykin and Zdancewic [19]
extended Polakow’s method to Benton’s calculus [3] based on
a linear/non-linear classification, offering a more flexible frame-
work, in which they demonstrated many examples.

Since the existing works in Haskell depend on type classes and
functional dependencies to encode variable usage in types, it is
difficult to migrate them to other languages. Furthermore, they
lack pattern matching against structured data.

6.2 Linearity in session type implementations
The first encoding of session types is attributed to Neubauer

and Thiemann [17]. It is older than the above mentioned encod-
ings, but also relies on Haskell’s functional dependencies. It only
allows to handle one channel at a time and is difficult to generalise
to multiple channels. Pucella and Tov [25] proposed a library im-
plementation of session types that can handle multiple channels
based on a parameterised monad. In their monad, pre- and post-
conditions in the monad are a stack of linear resources, and the
communication primitives apply on the top element of the stack.
It also offers stack manipulation primitives dig and swap. This
technique is applicable to languages other than Haskell. How-
ever, programming with such stack manipulations becomes cum-
bersome and tends to be unreadable. This problem was solved
by Imai et al. [11] in Haskell using HOAS. Similar to Polakow’s
technique, HOAS-based encoding can directly mention linear re-
sources by variable name, thus making programs more readable.
However, it is also difficult to adapt it to languages other than
Haskell since it again requires type classes and functional depen-
dencies.

6.3 Expressiveness
Instead of lambda abstraction as in the linear lambda calculus,

linocaml can pass linear values through slots pointed by lenses,
which can be bound to variables in the host language.

An interesting question would be whether our library, which
does not have linear λ-abstraction, has equal expressiveness to
the ones by Kiselyov and Polakow.

First, let us consider the case where the linear argument is
a non-functional, first-order value. linocaml can express the
equivalent of linear abstractions and function applications such
as (λx.λy.x + y) 42 21 by defining add in the following way:

val add : (int lin, empty, 'pre, 'mid) lens ->
(int lin, empty, 'mid, 'post) lens ->
('pre, 'post, int lin) monad

and by passing parameters via lenses as follows:

[%linret 42] >>- fun%lin _0 ->
[%linret 21] >>- fun%lin _1 ->
add _0 _1

However, we have not considered how to introduce higher order
functions such as λ f .λx. f x. Since fun%lin cannot be nested like
in fun%lin #l1 -> fun%lin #l2 -> , and because linocaml
stores linear values in slots rather than in variables, it is not obvi-
ous how to encode such curried functions.*14

*14 For example, by using extend and shrink in § 3.2.3, we can construct

© 2014 Information Processing Society of Japan 12

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

On the other hand, by using the host language abstraction
mechanism, we can construct higher order functions by slot ma-
nipulation and lens passing, like iteriM, mapiM, as we have seen
in § 3.2.2 (Example 3.3 and Example 3.4). Furthermore, in Ex-
ample 3.3, the function passed to iteriM updates the linear values
by passing them via slot _1:

iteriM (fun i x ->
lookup i @> _1 >>= fun y ->
update i (x + y) @> _1)

_0

In the linear lambda calculus, a closure that contains linear val-
ues must also be treated linearly. On the other hand, closures (
fun i x -> ..) and (fun%lin #_0 -> ..) in linocaml do not
have this limitation and can be used freely. Thus, although com-
parison of the expressiveness is not evident, the authors expect
linocaml to be as expressive as the linear lambda calculus.

7. Conclusion
This paper described an encoding of linear types in OCaml

using a parameterised monad and lenses, which we have made
available through the linocaml library. The usage of lenses as
a handle to linear values allows easy porting to other languages
such as Standard ML and Haskell. Additionally, we utilised
OCaml’s syntax extension to provide pattern matching against
linear values, which can be used to manipulate structured data
such as linearly typed lists. For a practical example, we have
shown a solution to the Santa Claus problem, which exploits lin-
ear pattern matching.

Notwithstanding its light weight, this encoding can simulate
static, linearly typed programming using a set of well-known fea-
tures in functional programming such as monads and lenses. Lin-
ear types are still terra incognita for most programming languages
with Rust being the only widely known programming language
supporting them natively. By introducing them in OCaml, we en-
able programmers to directly benefit from resource safety, and,
eventually, we hope that it will also bring runtime efficiency.

Future work. Since computation in LinMonad involves many
closures, it is bound to be less efficient than programs written in
direct style. Slot-based access also has a small cost to follow the
nesting pairs. This cost would be negligible in communication-
centric programs where the bottleneck lies in other parts; how-
ever, it does matter for computation-intensive tasks such as array
manipulations. Such performance analysis and improvement are
future works.

Lenses have a polymorphic type such as ('a, 'b, 'a * 'xs,
'b * 'xs) lens for lens _0. However, such first-class polymor-

phic values are not available in many programming languages.
Implementing this lens-based programming framework in Java-
like languages, to allow wider use of the proposed techniques, is
an interesting challenge.

Acknowledgments We thank the anonymous reviewers for
the thorough review and constructive comments. This work
is partially supported by KAKENHI 16K00095 and 17K12662

a local environment at the beginning of the slot sequence. However, it
leads us to de Bruijn indices, with the same readability problems as in
Kiselyov’s encoding.

from JSPS, Japan, and by Grants-in-aid for Promotion of Re-
gional Industry-University-Government Collaboration from Cab-
inet Office, Japan.

References
[1] Atkey, R.: Parameterized Notions of Computation, Journal of Func-

tional Programming, Vol. 19, No. 3-4, pp. 335–376 (online), DOI:
10.1017/S095679680900728X (2009).

[2] Ben-Ari, M.: How to solve the Santa Claus problem, Concur-
rency: Practice & Experience, Vol. 10, No. 6, pp. 485–496
(online), DOI: 10.1002/(SICI)1096-9128(199805)10:6<485::
AID-CPE329>3.0.CO;2-2 (1998).

[3] Benton, P. N.: A Mixed Linear and Non-Linear Logic: Proofs, Terms
and Models, Computer Science Logic, 8th International Workshop,
Kazimierz, Poland, LNCS, Vol. 933, Springer, pp. 121–135 (online),
DOI: 10.1007/BFb0022251 (1994).

[4] Bernardy, J., Boespflug, M., Newton, R. R., Peyton Jones, S. and Spi-
wack, A.: Linear Haskell: practical linearity in a higher-order poly-
morphic language, PACMPL, Vol. 2, No. POPL, pp. 5:1–5:29 (online),
DOI: 10.1145/3158093 (2018).

[5] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. and
Schmitt, A.: Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem, ACM Trans. Program.
Lang. Syst., Vol. 29, No. 3, p. 17 (online), DOI: 10.1145/1232420.
1232424 (2007).

[6] Garrigue, J.: Safeio (A mailing-list post) (2006). Available at https:
//github.com/garrigue/safeio.

[7] Garrigue, J. and Normand, J. L.: Adding GADTs to OCaml:
the direct approach, ACM SIGPLAN Workshop on ML (2011).
Available at https://www.math.nagoya-u.ac.jp/˜garrigue/
papers/ml2011.pdf.

[8] Honda, K., Vasconcelos, V. T. and Kubo, M.: Language Primitives and
Type Discipline for Structured Communication-Based Programming,
ESOP ’98: Proceedings of the 7th European Symposium on Pro-
gramming, LNCS, Vol. 1381, Springer, pp. 122–138 (online), DOI:
10.1007/BFb0053567 (1998).

[9] Imai, K., Yoshida, N. and Yuen, S.: Session-ocaml: A Session-Based
Library with Polarities and Lenses, COORDINATION 2017: Coordi-
nation Models and Languages, LNCS, Vol. 10319, Springer, pp. 99–
118 (online), DOI: 10.1007/978-3-319-59746-1_6 (2017).

[10] Imai, K., Yoshida, N. and Yuen, S.: Session-ocaml: a Session-based
Library with Polarities and Lenses, Sci. Comput. Program., Vol. 172,
pp. 135–159 (online), DOI: 10.1016/j.scico.2018.08.005 (2018). To
appear.

[11] Imai, K., Yuen, S. and Agusa, K.: Session Type Inference in
Haskell, PLACES 2010: Thrid Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software,
EPTCS, Vol. 69, pp. 74–91 (online), DOI: 10.4204/EPTCS.69.6
(2010).

[12] Jones, M. P.: Type Classes with Functional Dependencies, ESOP ’00:
Proceedings of the 9th European Symposium on Programming Lan-
guages and Systems, LNCS, Vol. 1782, Springer, pp. 230–244 (on-
line), DOI: 10.1007/3-540-46425-5_15 (2000).

[13] Kiselyov, O.: Typed Tagless Final Interpreters, Generic and In-
dexed Programming - International Spring School, SSGIP 2010,
Oxford, UK, March 22-26, 2010, Revised Lectures, LNCS,
Vol. 7470, Springer, pp. 130–174 (online), DOI: 10.1007/
978-3-642-32202-0_3 (2010).

[14] Kmett, E.: Lenses, Folds and Traversals (2012). Available at http:
//lens.github.io/.

[15] Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D.
and Vouillon, J.: Representation of OCaml data types, in The
OCaml system release 4.07 Documentation and user’s man-
ual (2018). Available at http://caml.inria.fr/pub/docs/
manual-ocaml-4.07/intfc.html.

[16] Marlow, S.: Haskell 2010 Language Report (2010). https://www.
haskell.org/definition/.

[17] Neubauer, M. and Thiemann, P.: An Implementation of Session
Types, PADL’04 : Practical Aspects of Declarative Languages,
LNCS, Vol. 3057, Springer, pp. 56–70 (online), DOI: 10.1007/
978-3-540-24836-1_5 (2004).

[18] Nick Benton: Jingle Bells: Solving the Santa Claus Problem in Poly-
phonic C♯ (2003). Available at https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/02/santa.pdf.

[19] Paykin, J. and Zdancewic, S.: The linearity Monad, Proceedings of
the 10th ACM SIGPLAN International Symposium on Haskell, ACM,
pp. 117–132 (online), DOI: 10.1145/3122955.3122965 (2017).

[20] Pfenning, F. and Elliot, C.: Higher-Order Abstract Syntax, PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 conference on Programming

© 2014 Information Processing Society of Japan 13

Journal of Information Processing Vol.22 1–14 (Jan. 2014)

Language Design and Implementation, ACM, pp. 199–208 (online),
DOI: 10.1145/53990.54010 (1988).

[21] Pickering, M., Gibbons, J. and Wu, N.: Profunctor Optics: Mod-
ular Data Accessors, The Art, Science, and Engineering of Pro-
gramming, Vol. 1, No. 2, p. Article 7 (online), DOI: 10.22152/
programming-journal.org/2017/1/7 (2017).

[22] Pierce, B. C.: Recursive Types, Types and Programming Languages,
MIT Press, chapter 20 (2002).

[23] Plasmeijer, R., van Eekelen, M. and van Groningen, J.: Clean Version
2.2 Language Report (2011). https://clean.cs.ru.nl/Clean.

[24] Polakow, J.: Embedding a Full Linear Lambda Calculus in Haskell,
Haskell ’15: Proceedings of the 2015 ACM SIGPLAN Symposium
on Haskell, ACM, pp. 177–188 (online), DOI: 10.1145/2804302.
2804309 (2015).

[25] Pucella, R. and Tov, J. A.: Haskell Session Types with (Almost) No
Class, Haskell ’08: Proceedings of the first ACM SIGPLAN sympo-
sium on Haskell, ACM, pp. 25–36 (online), DOI: 10.1145/1411286.
1411290 (2008).

[26] Rust project developers: The Rust Programming Language. https:
//www.rust-lang.org/.

[27] Trono, J. A.: A New Exercise in Concurrency, SIGCSE Bull., Vol. 26,
No. 3, pp. 8–10 (online), DOI: 10.1145/187387.187391 (1994).

[28] Wadler, P.: Linear types can change the world!, IFIP TC2
Working Conference on Programming Concepts and Methods
(1990). Available at https://homepages.inf.ed.ac.uk/
wadler/topics/linear-logic.html#linear-types.

[29] Wadler, P.: The essence of functional programming, POPL ’92: Pro-
ceedings of the 19th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages, ACM, pp. 1–14 (online), DOI:
10.1145/143165.143169 (1992).

Keigo Imai received his Doctor of Infor-
mation Science degree from Nagoya Uni-
versity in 2012. He was at the Center for
Embedded Computing Systems at Nagoya
University (2009–2010); IT Planning, Inc.
(2010–2013), and Research Administra-
tion Office at Kyoto University (2013–
2016); Since September 2016, he has been

an Assistant Professor at Gifu University. His research interests
include concurrency theory, type theory and software develop-
ment using functional programming languages.

Jacques Garrigue received his M.S. de-
gree from University Paris 7 and his D.S.
degree from the University of Tokyo in
1995. He is an alumnus of École Normale
Supérieure in Paris. He was a Research
Associate at Kyoto University from 1995
to 2004, and is now a Professor at Nagoya
University. His interests are in the theory

of programming languages, particularly type systems and proof
of programs. He is a member of IPSJ, JSSST and ACM.

© 2014 Information Processing Society of Japan 14

