
日本ソフトウェア科学会第 35 回大会 (2018 年度) 講演論文集

Proving tree algorithms for succinct data

structures

ReynaldAffeldt, JacquesGarrigue, XuanruiQi, Kazunari Tanaka

Succinct data structures give space efficient representations of large amounts of data without sacrificing

performance. In order to do that they rely on cleverly designed data representations and algorithms. We

present here the formalization in Coq/SSReflect of two different succinct tree algorithms. One is the Level-

Order Unary Degree Sequence (aka LOUDS), which encodes the structure of a tree in breadth first order

as a sequence of bits, where access operations can be defined in terms of Rank and Select, which work

in constant time for static bit sequences. The other represents dynamic bit sequences as binary red-black

trees, where Rank and Select present a low logarithmic overhead compared to their static versions, and with

efficient Insert and Delete. The two can be stacked to provide a dynamic representation of dictionaries for

instance. While both representations are well-known, we believe this to be their first formalization and a

needed step towards provably-safe implementations of big data.

1 Introduction

Succinct data structures [9] represent combinato-

rial objects (such as bit vectors or trees) in a way

that is space-efficient (using a number of bits close

of the information theoretic lower bound) and time-

efficient (i.e., not slower than classical algorithms).

This topic is attracting all the more attention as we

are now collecting and processing large amounts of

data in various domains such as genomes or text

mining. As a matter of fact, succinct data struc-

tures are now used in software products of data-

centric companies such as Google (e.g., [7]).

The more complicated a data structure is, the

∗ 簡潔データ構造における木構造アルゴリズムの形式証明
について
This is an unrefereed paper. Copyrights belong to

the Author(s).

レナルド・アフェルト,産業技術総合研究所, National Insti-

tute of Advanced Industrial Science and Technology.

ジャック・ガリグ　田中一成,名古屋大学多元数理科学研究科,

Nagoya University Grad. School of Mathematics.

Xuanrui Qi, タフツ大学, Tufts University.

harder it is to process it. A moment of thought

is enough to understand that constant-time access

to bit representations of trees requires ingenuity.

Succinct data structures therefore make for intri-

cate algorithms and their importance in practice

make them perfect targets for formal verification

(e.g., [13]).

In this paper, we tackle the formal verification

of tree algorithms for succinct data structures. We

first start by formalizing basic operations such as

counting (rank) and searching (select) bits in arrays

(see Sect. 3). This is an important step because the

theory of these basic operations sustains most suc-

cinct data structures. Next, we formally define and

verify a bit representation of trees called LOUDS

(see Sect. 3). It is for example used in the Mozc

Japanese input method by Google [7]. However,

like most succinct data structures, this bit represen-

tation only deals with static data. Last, we further

explore the advanced topic of dynamic bit vectors

(see Sect. 4). The implementation of the latter re-

quires to combine static bit vectors from succinct

data structures with classical balanced trees; we

show in particular how to use red-black trees for

the purpose of formal verification.

2 Two Functions to Build Them All

The rank and select functions are the most basic

blocks to form operations on succinct data struc-

tures: rank counts bits while select searches for

their position. The rest of this paper (in particular

Sect. 3. 2 and Sect. 4) explains how they are used

in practice to perform operations on trees. In this

section, we just briefly explain their formalization

and theory.

2. 1 Counting Bits with rank

The rank function counts the number of ele-

ments b (most often bits) in the prefix of an array s

(up to some index i). It can be conveniently for-

malized by means of standard list functions used in

functional programming:

Definition rank b i s := count_mem b (take i s).

The mathematically-inclined reader can alterna-

tively†1 think of it as the cardinal of the number of

indices of b bits in a tuple B:

Definition Rank (i : nat) (B : n.-tuple T) :=

#|[set k : [1,n] | (k <= i) && (tacc B k == b)]|.

([1,n] is the type of integers between 1 and n; tacc

accesses the tuple counting the indices from 1.)

Figure 1 provides concrete examples.

2. 2 Finding Bits with select

Intuitively, compared with rank, select performs

the converse operation: it returns the minimum in-

dex of a bit in an array. It is conveniently specified

using the ex_minn construct of the SSReflect li-

brary [5]:

Variables (T : eqType) (b : T) (n : nat).

Lemma select_spec (i : nat) (B : n.-tuple T) :

exists k, ((k <= n) && (Rank b k B == i)) ||

†1 This is actually the definition that appears in

Wikipedia at the time of this writing.

(k == n.+1) && (count_mem b B < i).

Definition Select i (B : n.-tuple T) :=

ex_minn (select_spec i B).

With this definition, select returns the index of the

sought bit plus 1 (counting indices from 0); selecting

the 0th bit always returns 0; when no adequate bit

is found, select returns the size of the array plus 1.

Figure 2 illustrates the select function and can be

compared with Fig. 1.

2. 3 The Theory of rank and select

The rank and select functions are used in a variety

of applications whose formal verification naturally

calls for a shared library of lemmas. Our first work

is to identify and isolate this theory. Its lemmas

are not all difficult to prove. For instance, the fact

that Rank cancels Select directly follows from the

definitions:

Lemma SelectK n (s : n.-tuple T) (j : nat) :

j <= count_mem b s ->

Rank b (Select b j s) s = j.

However, as often with formalization, it requires

a bit of work and try-and-error to find out the right

definitions and the right lemmas to put in the the-

ory of rank and select. For example, how appealing

the definition of Select above may be, proving its

equivalence with a functional version such as

Fixpoint select i (s : seq T) : nat :=

if i is i.+1 then

if s is a :: s' then

(if a == b then select i s'

else select i.+1 s').+1

else 1

else 0.

turns out to add much comfort to the development

of related lemmas.

As a consequence, the resulting theory of rank

and select sometimes looks technical and we there-

fore refer the reader to the source code [2] to better

appreciate its current status. Here, we just provide

for the sake of completeness the definition of two

derived functions that are used later in this paper.

Figure 1 Illustration of the rank function

Figure 2 Illustration of the select function

2. 3. 1 The succ Function

In a bitstring, the succ function computes the

position of the next 0-bit or 1-bit. It will find

its use when dealing with LOUDS operations (see

Sect. 3. 2. 2). More precisely, given a bitstring s,

succ b s y returns the index of the next b follow-

ing index y. This operation can be achieved by a

combination of rank and select. First, a call to rank

counts the number of b’s up-to index y; let N be

this number. Second, a call to select searches for

the (N + 1)th b (p. 89 of [9]):

Definition succ (b : T) (s : seq T) y :=

select b (rank b y.-1 s).+1 s.

In particular, there is no b in the set {si|y ≤ i <

succ b s y}:

Lemma succP b n (s : n.-tuple T) (y : [1, n]) :

b \notin

\bigcup_(i : [1,n] | y <= i < succ b s y)

[set tacc s i].

2. 3. 2 The pred Function

The pred function computes the position of the

previous bit and will find its use in Sect. 3. 2. 3. It

is similar to the succ function above so that we only

provide its implementation for reference:

Definition pred (b : T) (s : seq T) y :=

select b (rank b y s) s.

3 LOUDS Formalization

Operationally, a LOUDS (Level-Order Unary De-

gree Sequence) encoding consists in turning a tree

into an array of bits via a breadth-first traversal.

Figure 3 provides a concrete example. The result-

ing array is the ordered concatenation of the bit

representation of each node. Each node is repre-

sented by a list of bits that contains as many 1-bits

as there are children and that is terminated by a

0-bit.

The significance of the LOUDS encoding is that it

preserves the branching structure of the tree with-

out pointers: this makes therefore for a compact

representation of trees in memory. Moreover, read-

only operations can be implemented by means of

rank and select, for which there exist constant-time

implementations.

In this section, we explain how we formalize the

LOUDS encoding (Sect. 3. 1) and how we formally

verify the correctness of operations on trees built

out of rank and select (Sect. 3. 2).

3. 1 LOUDS Encoding Formalized in Coq

We define arbitrarily-branching trees by an in-

ductive type:

Figure 3 LOUDS encoding of a tree (without the labels)

Variable A : Type.

Inductive tree := Node : A -> seq tree -> tree.

The type A is for labels. With this defintion, a

leaf is a node with an empty list of children. For

example, the tree of Fig. 3 becomes:

Definition t : tree nat := Node 1

[:: Node 2 [:: Node 5 [::]; Node 6 [::]];

Node 3 [::];

Node 4 [:: Node 7 [::];

Node 8 [:: Node 10 [::]];

Node 9 [::]]].

For the sake of presentation, let us introduce the

definition of a forest as a list of trees:

Definition forest := seq tree.

We formalize level-order traversal of a tree by re-

cursion on its height. The recursion itself is defined

by an intermediate function that applies more gen-

erally to a forest (parameter l below):

Fixpoint lo_traversal''

(f : forest A -> seq B) n (l : forest A) :=

if n is n'.+1 then

f l ++

lo_traversal'' f n' (children_of_forest l)

else

[::].

The parameter n is expected to be filled with the

maximum height of the forest. The definition is fur-

thermore parameterized by an arbitrary function f

for generality. Level-order traversal is obtained by

instantiating lo_traversal'' appropriately:

Variable (f : forest A -> seq B).

Definition lo_traversal' n (l : forest A) :=

lo_traversal'' (flatten \o map f \o

@children_of_forest' _) n l.

Definition lo_traversal t :=

lo_traversal' (height t) [:: t].

The functions (height, etc.) used for the instan-

tiation are as expected (and not displayed to save

space). Just observe that the definition is still pa-

rameterized by some function f.

Finally, the LOUDS encoding is obtained by

(1) instantiating lo_traversal with an appropriate

function (the so-called node description of a node),

and (2) prepending an artificial root (this is a tech-

nical convenience, see p. 212 of [9]):

Definition node_description l :=

rcons (nseq (size l) true) false.

Definition LOUDS (t : tree A) :=

[:: true, false &

lo_traversal node_description t].

For example, we can recover the encoding displayed

in Fig. 3 with this definition of LOUDS:

Lemma LOUDS_t : LOUDS t = [:: true; false; true;

true; true; false; true; true; false; false;

true; true; true; false; false; false; false;

true; false; false; false].

3. 2 LOUDS Functions using rank and se-

lect

In this section, we explain how we formal-

ize LOUDS functions and prove their correctness.

These functions are essentially built out of rank

and select. Their correctness statements typically

establish a correspondence between operations on

trees defined inductively and operations on their

LOUDS encoding. We start by explaining how we

represent positions in trees and then comment on

the formal verification of LOUDS operations using

representative examples.

3. 2. 1 Positions in Trees

For a tree defined inductively, the representation

of the position of a node is textbook: using a path,

i.e., a list that records the branches taken from the

root to reach the node. For example, the position of

the node 8 in Fig. 3 is [:: 2; 1]. Not all positions

are valid, we sort out the valid ones by means of a

predicate (valid_position, omitted for brevity).

In contrast, the position of nodes in the LOUDS

encoding is not immediate. In our formalization, it

is computed by the following function:

Definition LOUDS_position

(t : tree A) (p : seq nat) :=

(count_smaller t p +

(count_smaller t (rcons p 0)).-1).+2.

count_smaller is an intermediate function that

counts the number of nodes appearing before dur-

ing the level-order traversal. Here, the first occur-

rence of count_smaller counts the number of nodes

(or equivalently the number of 0-bits) before the po-

sition p. The second occurrence counts the number

of nodes before the position of the first child (i.e.,

rcons p 0; whether this child exists or not does not

matter here): this is almost the number of 1-bits

before the position p (.-1 accounts for the fact that

we have counted the root node, which is nobody’s

child). .+2 is for the artificial root prepended by

the LOUDS encoding (see Sect. 3. 2. 1).

For example, in Fig. 3, the position of the node 8

is [:: 2; 1] in the inductively defined tree and 17

in the LOUDS encoding:

Definition p8 := [:: 2; 1].

Eval compute in LOUDS_position t p8.

(* 17 *)

Eval compute in count_smaller t p8.

(* 7 *)

Eval compute in count_smaller t (rcons p8 0).

(* 9 *)

For illustration, we also display the intermediate

results of evaluating the count_smaller function

whose code can be found online [2].

3. 2. 2 Number of Children using succ

In this section, we explain how to verify the

LOUDS function that counts the number of chil-

dren of a node. For a tree defined inductively, this

operation can be achieved by first walking down the

path to the node and then looking at the list of its

children. The formalization is unsurprising:

Definition children_of_node (t : tree) :=

let: Node _ l := t in l.

Fixpoint subtree (t : tree) (p : seq nat) :=

match p with

| nil => t

| n :: p' =>

subtree (nth t (children_of_node t) n) p'

end.

Definition children (t : tree) (p : seq nat) :=

size (children_of_node (subtree t p)).

To count the number of children of a node us-

ing a LOUDS encoding, one first has to notice that

in this representation each node is terminated by a

0-bit. Given such a 0-bit (or equivalently the corre-

sponding node), one can therefore find the number

of children by computing the distance with the next

0-bit (see p.214 of [9]). Finding the next 0-bit is

the purpose of the succ function (see Sect. 2. 3. 1):

Definition LOUDS_children (B : bitseq) v :=

succ false B v.+1 - v.+1.

LOUDS_children is correct because, when applied

to the LOUDS_position of a position p, it produces

the same result as the function children:

Theorem LOUDS_childrenE

(t : tree A) (p : seq nat) :

let B := LOUDS t in

valid_position t p ->

children t p =

LOUDS_children B (LOUDS_position t p).

3. 2. 3 Parent Node using rank and select

A path in a tree defined inductively gives direct

ancestry information. In particular, the penulti-

mate element denotes the parent. It takes more

ingenuity to find the parent using a LOUDS rep-

resentation and functions from Sect. 2 alone. The

idea is to count the number of nodes and branches

up-to the position in question. More precisely,

given a LOUDS position v, Let Nv be the number of

nodes up to v (rank false v B computes this num-

ber). Then, select true Nv B looks for the Nvth

down-branch, which is the branch leading to the

node of position v. Last, this branch belongs to

a node whose position can be recovered using the

pred function (from Sect. 2. 3. 2). This leads to the

following definition (see p.215 of [9]):

Definition LOUDS_parent (B : bitseq) v :=

let j := select true (rank false v B) B in

pred false B j.

One can check the correctness of LOUDS_parent

as follows. Consider a node reached by the

path rcons p x. Its parent is the node reached

by the path p. We can formally prove that the

LOUDS position of p and the position computed

by LOUDS_parent coincide:

Theorem LOUDS_parentE (t : tree A) p x :

valid_position t (rcons p x) ->

LOUDS_parent (LOUDS t)

(LOUDS_position t (rcons p x)) =

LOUDS_position t p.

The approach that we explained so far shows how

to carry out the formal verification of the LOUDS

operations that are listed in Table 8.1 of [9]. How-

ever, how useful they may be for many big-data

applications, these operations assume static com-

pact data structures. The next section (Sect. 4)

explains how to extend our approach to deal with

dynamic structures.

4 Dynamic vectors

4. 1 Representing Dynamic Vectors

All of the work described above are done in the

context of static, immutable bit vectors, but in

some real-life applications bit vectors need to sup-

port dynamic operations—not just static queries—

on them. In our formalization of such dynamic

bit vectors, we implemented and verified three dy-

namic operations: inserting a bit into the bit vec-

tor, setting a bit (i.e., set the value of the bit at

a certain position to 1), and clearing bit (set the

value of a bit to 0).

Insertion into a linear array has time complex-

ity O(n), but we can improve this by using a

balanced binary search tree to represent the bit

array, which will enable us to handle insertions

in max(O(w), O(logn)) time, with a trade-off of

O(n/w) bits of extra space, where w is a parame-

ter controlling the width of each tree node [9].

In our formalization of the dynamic bit vector’s

insert algorithm, we used a red-black tree as our

balanced tree structure, as not only multiple purely

functional implementations [6, 11], but also several

Coq formalizations [3,4], of red-black trees already

exist. While it was useful to refer to previous for-

malizations of red-black trees, due to the difference

of stored contents, we had to reimplement them.

Namely, the above formalizations of red-black trees

deal with sets, and maintain the ordering invari-

ant, while our trees represent vectors, and main-

tain both that the contents (as concatenation of

the leaves) are unchanged, and that meta-data in

inner nodes is correct.

Incidentally, we believe that our formalization of

tree algorithms for dynamic bit vectors is also the

first Coq formalization of red-black trees using the

SSReflect proof language and library. Using SS-

Reflect, our formalization becomes significantly

clearer than the other formalizations, as SSRe-

flect provides us with many useful functionali-

ties, such as boolean reflection and intro-patterns,

which allow us to write statements and proofs in a

readable and user-friendly way: for example, induc-

tive properties of trees are no longer represented by

Inductive, but now by simple boolean propositions

(i.e., functions returning bool), whose validity can

be checked by simple case analysis.

We experimented with two different represen-

tations of red-black trees: one with simple poly-

morphic algebraic data types, similar to what one

would use in a typical OCaml or Haskell imple-

mentation, as well as another with stronger type-

level guarantees using dependent types. We refer to

the former representation as the simply-typed vari-

ation, and the latter as the richly-typed variation.

We represent our bit vector as a red-black tree,

where each node holds a color and meta-data about

the bit vector, and each leaf holds a flat (i.e., list-

based) bit array. In the simply-typed version, we

store two natural numbers in each node, namely

the size and the rank of the left subtree:

Inductive btree (D A : Type) : Type :=

| Bnode of color & btree D A & D & btree D A

| Bleaf of A.

Definition dtree := btree (nat * nat) (seq bool).

Intuitively, one would prove properties of tree

algorithms using induction, but the inductive hy-

pothesis that comes with our inductive definition,

btree_ind, is not strong enough to prove many in-

teresting properties of our tree. We could, however,

note that the numbers encoded in each node are in

fact the left child’s size and rank, and we capture

this property using a boolean proposition, wf_dtree:

Fixpoint wf_dtree (B : dtree) :=

match B with

| Bnode _ l (num, ones) r =>

[&& num == size (dflatten l),

ones == count_mem true (dflatten l),

wf_dtree l & wf_dtree r]

| Bleaf _ => true

end.

With this well-formedness property, we could

prove a more powerful inductive hypothesis,

dtree_ind, which in turn allows us to prove more

interesting properties of our algorithm:

Lemma dtree_ind (P : dtree -> Prop) :

(forall c (l r : dtree) num ones,

num = size (dflatten l) ->

ones = count_mem true (dflatten l) ->

wf_dtree l /\ wf_dtree r ->

P l -> P r -> P (Bnode c l (num, ones) r)) ->

(forall s, P (Bleaf _ s)) ->

forall B, wf_dtree B -> P B.

In the richly-typed version, we encode the size,

rank and color of the tree, as well as the black-

depth (or “black-height”) of the tree [3] (i.e., the

number of black nodes on the path from the root)

into the type itself. Constructing a new node, thus,

requires providing a “well-coloredness” proof of the

node and its children:

Inductive color := Red | Black.

Definition color_ok parent child : bool :=

match parent,child with

| Red,Red => false

| _,_ => true

end.

Inductive param (A : Type) : Prop :=

Param : A -> param A.

Definition inc_black d c :=

match c, d with

| Black, Param n => Param n.+1

| _, _ => d

end.

Inductive tree : nat -> nat -> param nat -> color

-> Type :=

| Leaf : forall (arr : seq bool),

tree (size arr) (count_one arr) (Param 0)

Black

| Node : forall {s1 o1 s2 o2 d cl cr c},

color_ok c cl -> color_ok c cr ->

tree s1 o1 d cl -> tree s2 o2 d cr ->

tree (s1 + s2) (o1 + o2) (inc_black d c) c.

The type of the constructor Node enforces the in-

variants of red-black trees [11], which will be dis-

cussed in Sect. 4. 3. Since the major properties of

the tree have already been encoded in the type and

the constructors of the dependent tree, the regular

inductive hypothesis tree_ind suffices. Note that

we wrap the black-depth of the tree in a type param

of sort Prop, so that extraction erases this extra

parameter, which is only used in the formalization

and proofs, and is not necessary for executing the

algorithms.

4. 2 Verifying Basic Queries

The basic query operations, rank and select, could

be easily defined via traversal of the tree, and we

implement these queries as three Coq functions,

drank, dselect_1 and dselect_0, corresponding to

the queries rank, select1, and select0, respectively.

The rank query (see Sect. 2. 1 for details), for exam-

ple, is implemented as following in the simply-typed

variation (the implementation for the richly-typed

variation is very similar).

Fixpoint drank (B : dtree) (i : nat) :=

match B with

| Bnode _ l (num, ones) r =>

if i < num

then drank l i

else ones + drank r (i - num)

| Bleaf s =>

rank true i s

end.

The select1 and select0 queries are implemented

similarly. To prove the correctness of our imple-

mentation, however, we need to define a “flatten”

function that converts our tree representation of a

bit vector to a flat representation of the vector:

Fixpoint dflatten (B : dtree) :=

match B with

| Bnode _ l _ r => dflatten l ++ dflatten r

| Bleaf s => s

end.

With this dflatten function, we could prove that

our functions drank, dselect_1 and dselect_0 actu-

ally compute the queries rank, select1, and select0,

proceeding by induction. In the simply-typed ver-

sion, we may use the dtree_ind lemma defined

above. Note that our implementation is only cor-

rect on well-formed trees:

Lemma drankK (B : dtree) i : wf_dtree B ->

drank B i = rank true i (dflatten B).

Proof.

move=> wf; move: B wf i.

apply: dtree_ind => // c l r num ones -> -> _

IHl IHr i /=.

(* the rest of the proof omitted *)

Qed.

For the richly-typed version, however, the signa-

ture of our data constructor ensures that all trees

are well-formed, and thus regular induction by elim

will suffice:

Lemma drankK nums ones d c (B: tree nums ones d c)

i : drank B i = rank true i (dflatten B).

Proof.

elim: B i => //= lnum o1 s2 o2 d0 cl cr c0 i i0 l

IHl r IHr x.

by rewrite rank_cat -dflatten_size IHl -IHr

-dflatten_rank.

Qed.

Other queries could be verified similarly.

4. 3 Implementing and Verifying Inser-

tion

4. 3. 1 The Simply-Typed Variation

Insertion is significantly harder to implement

than the static queries. While each of the static

queries only takes around a dozen lines to im-

plement and verify, the Coq implementation and

proofs for insertion is on the order of 300-400 lines

in both versions.

For the simply-typed variation, we translate the

algorithm given by [9] directly into Coq.

Fixpoint dins (B : dtree) b i w : dtree :=

match B with

| Bleaf s =>

let s' := insert1 s b i in

if size s + 1 == 2 * (w ^ 2)

then let n := (size s') %/ 2 in

let sl := take n s' in

let sr := drop n s' in

Bnode Red (Bleaf _ sl)

(size sl, rank true (size sl) sl)

(Bleaf _ sr)

else Bleaf _ s'

| Bnode c l (num, ones) r =>

if i < num

then balanceL c (dins l b i w) r

else balanceR c l (dins r b (i - num) w)

end.

Definition dinsert (B : dtree) b i w : dtree :=

match dins B b i w with

| Bleaf s => Bleaf _ s

| Bnode _ l d r => Bnode Black l d r

end.

where balanceL and balanceR balance an unbalanced

red-black tree [3,11], fixing imbalances occuring on

the left and on the right, respectively. See [11] for

the conventional method of balancing purely func-

tional red-black trees. dinsert is a simple wrapper

over dins that completes the insertion by painting

the root black.

Verifying dinsert requires verifying three differ-

ent properties: dinsert must preserve the data,

must return a balanced red-black tree, and must

also maintain the well-formedness property.

The first part is relatively simple: about 30 lines,

including lemmas for balanceL, balanceR and dins.

Lemma dinsertK (B : dtree) b i w :

wf_dtree B -> dflatten (dinsert B b i w) =

insert1 (dflatten B) b i.

The more interesting (and also important) part,

however, is proving that dinsert never breaks the

red-black tree invariant; more importantly, we want

to eliminate cases where the “height balance” at a

node is broken. It is easy to model the property

that no red node has a red child; the “height bal-

ance” property is modeled using the black-depth.

We can thus model the red-black tree invariant with

a recursive function, is_redblack:

Fixpoint is_redblack (B : dtree) ctxt bh :=

match B with

| Bleaf _ => bh == 0

| Bnode c l _ r =>

match c, ctxt with

| Red, Red => false

| Red, Black => is_redblack l Red bh

&& is_redblack r Red bh

| Black, _ => (bh > 0)

&& is_redblack l Black (bh.-1)

&& is_redblack r Black (bh.-1)

end

end.

where ctxt is the “color context”, or the color of

the parent’s node, and bh is the black-depth of the

node.

Splitting a leaf will introduce a red node, which

may break this invariant if its parent was already

red. While the balancing functions will fix that,

they may have to push up the red-red conflict to

avoid raising the black depth. To inductively ver-

ify dins, we introduce a weaker invariant, saying

that, when the original parent was black, sub-trees

returned by dins would be red-black if their root

node were painted black [3], as modeled by the

nearly_redblack property:

Definition nearly_redblack (B : dtree) bh :=

match B with

| Bnode Red l _ r => is_redblack l Black bh

&& is_redblack r Black bh

| _ => is_redblack B Black bh

end.

Once again, we may prove properties of dins rel-

atively straightforwardly, proceeding by case anal-

ysis, but the parts involving balanceL and balanceR

require special attention.

Lemma balanceL_Black_nearly_is_redblack l r n :

nearly_redblack l n -> is_redblack r Black n ->

is_redblack (balanceL Black l r) Black n.+1.

Proof.

case: l => [[[[] lll llD llr|llA] lD [[] lrl lrD

lrr|lrA]|ll lD lr]|lA] /=;

repeat decompose_rewrite => //;

by rewrite !is_redblack_Red_Black -?(eqP H1).

Qed.

Lemma balanceR_Black_nearly_is_redblack l r n :

nearly_redblack r n -> is_redblack l Black n ->

is_redblack (balanceR Black l r) Black n.+1.

Lemma dins_is_redblack (B : dtree) b i w n :

(is_redblack B Black n -> nearly_redblack

(dins B b i w) n) /\

(is_redblack B Red n -> is_redblack

(dins B b i w) Black n).

The case analysis in balanceL_Black_nearly_is_redblack

generates 11 distinct cases, each of them hav-

ing complex hypotheses and goals. Specifically,

hypotheses and goals will be stated in terms of

boolean conjunctions, thus we defined a tactic that

simplifies these goals by destructing all boolean

conjunctions in the premises of the goal into sepa-

rate hypotheses, and attempting to rewrite the goal

using each of them:

Ltac decompose_rewrite :=

let H := fresh "H" in

move/andP => [] ||

(move => H; try rewrite H; try rewrite (eqP H)).

Note that try rewrite (eqP H) is essential, as

many of the generated hypotheses will be in the

form of SSReflect boolean equalities, and it

is necessary to reflect them into the correspond-

ing Coq equality using eqP before the call to

rewrite. Thanks to decompose_rewrite, the proof

of balanceL_Black_nearly_is_redblack, and that of

similar propositions, could be kept simple.

Finally, we may prove that dinsert preserves the

red-black tree invariant by noting that dinsert re-

paints the root such that “nearly red-black” trees

would become fully red-black after the repainting.

Also, note that dinsert will increase the black-

depth of the tree by 1 if the root node is red after

the call to dins; however, as we are not interested

in the specific value of the tree’s black-depth, we

use an existential qualifier to “abstract over” the

value of the black-depth.

Lemma dinsert_is_redblack (B : dtree) b i w n :

is_redblack B Red n -> exists n',

is_redblack (dinsert B b i w) Red n'.

Proof.

exists (if (dins B b i w) is Bnode Red _ _ _

then n + 1 else n).

(* the rest omitted *)

Qed.

Of course, this is not the end of our proof of

correctness for dinsert, as we still need to ver-

ify that dinsert preserves the well-formedness of

trees. This is essential, as queries on non-well-

formed trees will not give the expected result! Since

the proof procedure is broadly similar to what we

described above for red-black tree invariants (again

using decompose_rewrite), we will not get into proof

details.

Lemma dinsert_wf (B : dtree) b i w :

wf_dtree B -> wf_dtree (dinsert B b i w).

4. 3. 2 The Richly-Typed Variation: An

Experiment in Dependently-Typed

Programming in Coq

Our richly-typed representation of dynamic bit

vectors enforces some very strong correctness pred-

icates using dependent types, but this also makes

programming dinsert much more complex. Hope-

fully, Coq’s Program framework [12] should assist us

in writing dependently-typed programs in a clear

and intuitive fashion. However, Program is not al-

ways stable, and can sometimes reject perfectly rea-

sonable programs, or even fail due to internal bugs.

In order to improve the readability of our code, we

use Gallina (often with the aid of Program) when-

ever possible, but occasionally our only practical

option was to build programs using Ltac.

Since dinsert can break the invariants of tree

in its intermediate steps (red nodes can have red

children), we will need to introduce an “inter-

mediate tree” representation that corresponds to

nearly_redblack:

Inductive near_tree : nat -> nat -> param nat

-> color -> Type :=

| Bad : forall {s1 o1 s2 o2 s3 o3 d},

tree s1 o1 d Black ->

tree s2 o2 d Black ->

tree s3 o3 d Black ->

near_tree (s1 + s2 + s3) (o1 + o2 + o3)

d Red

| Good: forall {s o d c} p,

tree s o d c ->

near_tree s o d p.

We may observe that near_tree is a tree represen-

tation which allows at most one red node to have

at most one red parent. As a result, this repre-

sentation lets us implement balanceL and balanceR

rather naturally. First, we define some helper func-

tions required to implement them.

Definition fix_color {nl ml d c}

(l : near_tree nl ml d c) :=

match l with

| Bad _ _ _ _ _ _ _ _ _ _ => Red

| Good _ _ _ _ _ _ => Black

end.

Definition dflattenn {n m d c}

(B : near_tree n m d c) :=

match B with

| Bad _ _ _ _ _ _ _ x y z =>

dflatten x ++ dflatten y ++ dflatten z

| Good _ _ _ _ _ t => dflatten t

end.

As balanceL’s type enforces complex invariants,

it would be tedious to implement this function di-

rectly in Gallina. Unfortunately, Program was of no

help here, all our attempts at using it ultimately

failing with various kinds of errors. Thus, we ended

up implementing balanceL using the Ltac proof

language, as it support pattern matching over de-

pendent algebraic data types better than Gallina.

Definition balanceL {nl ml d cl cr nr mr}

(p : color)

(l : near_tree nl ml d cl)

(r : tree nr mr d cr) :

color_ok p (fix_color l) ->

color_ok p cr ->

{tr : near_tree (nl + nr) (ml + mr)

(inc_black d p) p

| dflattenn tr = dflattenn l ++ dflatten r}.

destruct l as [s1 o1 s2 o2 s3 o3 d' x y z

| s o d' c' cc l'].

(* l is bad *)

-case: p => //= cpl cpr.

rewrite -(addnA (s1 + s2)) -(addnA (o1 + o2)).

exists (Good Black (rnode (bnode x y)

(bnode z r))).

by rewrite /= !catA.

(* l is good *)

-case: p => /= cpl cpr; last

by exists (Good Black (bnode l' r)).

case Hc': c' in cpl.

(* bad pattern (c' and p are red) *)

+destruct l' as

[|? ? ? ? ? cl' cr' c' ? ? l'1 l'2] => //.

subst c'; destruct cl', cr', cr => //.

exists (Bad l'1 l'2 r).

by rewrite /= !catA.

(* otherwise *)

+subst c'; destruct cr => //.

by exists (Good Red (rnode l' r)).

Defined.

Note that the types of balanceL include not only

the well-formedness of the resulting tree, but also

correctness as stated by balanceLK (using a subset

type); thus, our implementation of balanceL is cor-

rect by construction. balanceR is defined symmet-

rically.

With balanceL and balanceR implemented, we

may transcribe the insert algorithm into Coq and

obtain a formalization of dinsert' (equivalent to

dins in the simply-typed formalization), with the

aid of Program:

Program Fixpoint dinsert' {n m d c}

(B : tree n m d c)

(b : bool) (i : nat) (w : nat)

{measure (size_of_tree B)} :

{ B' : near_tree n.+1 (m + b) d c

| dflattenn B' = insert1 (dflatten B) b i } :=

match B with

| Leaf s =>

let s' := insert1 s b i in

if size s + 1 == 2 * (w ^ 2)

then let n := (size s') %/ 2 in

let sl := take n s' in

let sr := drop n s' in

Good c (rnode (Leaf sl) (Leaf sr))

else Good c (Leaf s')

| Node s1 o1 s2 o2 d cl cr _ okl okr l r =>

if i < s1

then proj1_sig (balanceL c

(dinsert' l b i w)

r _ okr)

else proj1_sig (balanceR c l

(dinsert' r b

(i - s1) w)

okl _)

end.

where size_of_tree B denotes the number of leaves

contained in B.

Finally, we paint the root node black using

a helper function, real_tree, and obtain a well-

formed red-black tree that represents the bit vector

after insertion:

Definition real_tree {nl ml d c}

(t : near_tree nl ml d c) : tree nl

ml (inc_black d (inv (fix_color t)))

(black_of_bad t) :=

match t with

| Bad _ _ _ _ _ _ _ x y z =>

bnode (rnode x y) z

| Good _ _ _ _ _ t' => t'

end.

Definition dinsert {n m d c}

(B : tree n m d c) (b : bool)

(i : nat) (w : nat) :=

real_tree (proj1_sig (dinsert' B b i w)).

Lemma real_treeK {nl ol d c}

(t : near_tree nl ol d c) :

dflatten (real_tree t) = dflattenn t.

Lemma dinsertK {n m d c} (B : tree n m d c)

b i w : dflatten (dinsert B b i w) =

insert1 (dflatten B) b i.

5 Related Work

One can find a Coq formalization of a constant-

time, o(n)-space rank function in [13], which is ac-

tually our starting point. The main focus of [13]

is the extraction of efficient OCaml code for rank.

This topic is further discussed in [14] where effi-

cient C code is extracted for the same rank function.

In comparison, our work focuses on extending the

toolset for succinct data structures with more func-

tions (select, succ, etc.) and dynamic structures.

Yet, we do plan to enable code extraction for the

functions we have been verifying.

Dynamic bit vectors are represented using bal-

anced binary search trees, and any type of height-

balanced binary search tree could in principle be

used [9]. There are multiple purely-functional bal-

anced binary search tree implementations, such as

purely functional AVL trees [8] and Adams trees [1],

but purely functional red-black trees are by far the

most common, most widely studied, and easiest to

implement. Moreover, they have already been for-

malized using interactive theorem provers such as

Coq [3, 4], Agda, and Isabelle [10].

We found Appel’s formalization [3] easiest to

work with, thus we formulate our invariants and

propositions in a way broadly similar to his [3], but

our style of proof is drastically different. Specifi-

cally, Appel’s formalization prefers using “domain-

specific” tactics and proof automation by Ltac

hacking [3], but we generally prefer adopting the

more uniform SSReflect approach of relying on

rewriting and reduction to solve goals. Appel’s

proof style results in slightly shorter proofs, but

our proofs seem easier to read and to step-through,

and are more robust—Ltac is often opaque and

difficult to debug.

6 Conclusion

In this paper, we have reported on an on-going

effort to formalize succinct data structures. We

started with a foundational theory of the rank and

select functions for counting and searching bits in

arrays. Using this theory, we have shown how one

can formalize a standard compact representation

of trees (the LOUDS representation) and prove the

correctness of its basic operations. Last, we have

almost completed the formalization of dynamic vec-

tors: an advanced topic in succinct data structures.

Our work is a first step towards the construction

of a formal theory of succinct data structures. We

already overcame several technical difficulties when

dealing with LOUDS trees: it took much care to

deal with non-structural recursions and to sort out

the off-by-one conditions when specifying basic op-

erations. Similarly, the formalization of dynamic

vectors was not the matter of bringing an existing

formalization of balanced trees so as to extend op-

erations on static data structures. Instead, it led

to investigate in detail the literature on the formal-

ization of red-black trees.

We have not yet formalized deletion for our bit

vectors, due to the algorithm’s complexity. The

high-level algorithm for delete is already complex,

and it becomes even more complex when translated

into Coq [9]. Thus, we intend to investigate a mod-

ular way to formalize delete, such that we can solve

the difficulties one by one.

Acknowledgements

We acknowledge the support of the JSPS-CNRS

bilateral program “FoRmal tools for IoT sEcurity”

and thank the project participants, in particular

Akira Tanaka for his comments on code extraction.

References

[1] Adams, S.: Functional Pearls: Efficient sets–a

balancing act, Journal of Functional Programming,

Vol. 3, No. 4(1993), pp. 553–561.

[2] Affeldt, R., Garrigue, J., Qi, X., and Tanaka,

K.: A Coq formalization of succinct data structures,

https://github.com/affeldt-aist/succinct, 2018.

[3] Appel, A. W.: Efficient Verified Red-Black

Trees, September 2011. http://www.cs.princeton.

edu/~appel/papers/redblack.pdf.

[4] Chlipala, A.: Certified Programming with De-

pendent Types: A Pragmatic Introduction to the

Coq Proof Assistant, The MIT Press, 2013.

[5] Gonthier, G., Mahboubi, A., and Tassi, E.: A

Small Scale Reflection Extension for the Coq sys-

tem, Technical report, INRIA, 2008. Version 17

(Nov 2016).

[6] Kahrs, S.: Red-black trees with types, Journal

of Functional Programming, Vol. 11, No. 4(2001),

pp. 425–432.

[7] Kudo, T., Hanaoka, T., Mukai, J., Tabata, Y.,

and Komatsu, H.: Efficient dictionary and language

model compression for input method editors, Pro-

ceedings of the Workshop on Advances in Text Input

Methods (WTIM 2011), 2011, pp. 19–25.

[8] Myers, E. W.: Efficient Applicative Data Types,

Proceedings of the 11th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Lan-

guages (POPL ’84), Salt Lake City, Utah, USA,

January 15–18, 1984, ACM, 1984, pp. 66–75.

[9] Navarro, G.: Compact Data Structures: A Prac-

tical Approach, Cambridge University Press, 1st edi-

tion, 2016.

[10] Nipkow, T.: Automatic Functional Correct-

ness Proofs for Functional Search Trees, Interactive

Theorem Proving (ITP 2016), Blanchette, J. and

Merz, S.(eds.), Lecture Notes in Computer Science,

Vol. 9807, 2016, pp. 307–322.

[11] Okasaki, C.: Purely Functional Data Structures,

Cambridge University Press, 1998.

[12] Sozeau, M.: Subset Coercions in Coq, Proceed-

ings of the 2006 International Conference on Types

for Proofs and Programs (TYPES’06), Notting-

ham, UK, April 18–21, 2006, Altenkirch, T. and

McBride, C.(eds.), Lecture Notes in Computer Sci-

ence, Vol. 4502, Springer-Verlag, 2007, pp. 237–252.

[13] Tanaka, A., Affeldt, R., and Garrigue, J.: For-

mal Verification of the rank Algorithm for Succinct

Data Structures, 18th International Conference

on Formal Engineering Methods (ICFEM 2016),

Tokyo, Japan, November 14–18, 2016, Lecture

Notes in Computer Science, Vol. 10009, Springer,

Nov 2016, pp. 243–260.

[14] Tanaka, A., Affeldt, R., and Garrigue, J.: Safe

Low-level Code Generation in Coq using Monomor-

phization and Monadification, Journal of Informa-

tion Processing, Vol. 26(2018), pp. 54–72.

