
Proving OCaml’s type system?

Jacques Garrigue

Nagoya University

Jacques Garrigue — Proving OCaml’s type system? 1

What’s in OCaml’s type system

– Core ML with relaxed value restriction

– Recursive types

– Polymorphic objects and variants

– Structural subtyping (with variance annotations)

– Modules and applicative functors

– Private types: private datatypes, rows and

abbreviations

– Recursive modules . . .

Jacques Garrigue — Proving OCaml’s type system? 2

What are the guarantees?

Already proved

– Type soundness and principality of type inference for various
subsets (by hand)

– Mechanical proof of type soundness for the core part:
OCaml-Light project (without the relaxed value restriction)

Can we hope to formally prove properties of the whole type
system?

– Some parts are not even fully formalized (e.g. subtyping)

– Recursive types seem to frighten everybody

Jacques Garrigue — Proving OCaml’s type system? 3

What I have been doing

Playing around with Coq. . .

– Proved type soundness for structural polymorphism

◦ accounts for polymorphic objects and variants, including
equi-recursive types

◦ proof is based on “Engineering formal metatheory”

– Formalized and proved various properties for subsets of subtyping

◦ weak transitivity, correctness of inference for parameterized
types with variance annotations and private abbreviations

◦ soundness of inference with the above extended with
recursive object and variant types

Jacques Garrigue — Proving OCaml’s type system? 4

Synopsis

– What’s in OCaml’s type system

– Structural polymorphism

◦ Reusing formal metatheory

◦ Encoding a framework with modules

◦ Adding a non syntax-directed rule

– OCaml’s subtyping

◦ What is true. . . and what is not!

◦ Proving it.

Jacques Garrigue — Proving OCaml’s type system? 5

Structural polymorphism

A typing framework for polymorphic variants and records

– sufficient to describe most types of OCaml

– polymorphism is described by local constraints

– constraints are kept in a recursive kinding

environment

– constraints are abstract, and constraint domains with

their δ-rules can be defined independently

Jacques Garrigue — Proving OCaml’s type system? 6

Types and kinds

Types are mixed with kinds in a mutually recursive way.

T ::= α type variable
| u base type
| T → T function type

σ ::= T | ∀ᾱ.K . T polytypes
K ::= ∅ | K, α :: k kinding environment
k ::= • | (C;R) kind
R ::= {r(a, T), . . .} relation set

Type judgments contain both a type and a kinding

environment. K;E ` e : T

Jacques Garrigue — Proving OCaml’s type system? 7

Example: polymorphic variants

Kinds have the form (L, U ;R), such that L ⊂ U .

Number(5) : α :: ({Number},L; {Number : int}) . α

l2 = [Number(5), Face(”King”)]
l2 : α :: ({Number , Face},L; {Number : int , Face : string}) . α list

length = function Nil() → 0 | Cons(a, l) → 1 + length l
length : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α}) . α → int

length ′ = function Nil() → 0 | Cons(l) → 1 + length l
length ′ : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : α}) . α → int

f l = length l + length2 l
f : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α, Cons : α}) . α → int

Jacques Garrigue — Proving OCaml’s type system? 8

Constraint domain

A set of abstract constraints C with entailment |=

– ⊥ ∈ C such that ∀C.⊥ |= C and C |= ⊥ decidable

– |= reflexive and transitive

– for any C and C′, C ∧ C′ is the weakest constraint entailing both
C and C′

Observations C ` p(a) (a a symbol) compatible with entailment

Relating predicates r(a, T) with propagation rules of the form:

∀x.(r(x, α1) ∧ r(x, α2) ∧ p(x) ⇒ α1 = α2)

Typed constants and δ-rules, which should satisfy subject reduction

Jacques Garrigue — Proving OCaml’s type system? 9

Admissible substitution

K ` θ : K′ (θ admissible), if for all α :: (C, R) in K, θ(α) is

a type variable α′ and it satisfies the following properties.

1. α′ :: (C′, R′) ∈ K′ keep kinding

2. C′ |= C entailment of constraints

3. θ(R) ⊆ R′ keep types

Every C in K′ shall be valid, and R satisfy propagation.

Jacques Garrigue — Proving OCaml’s type system? 10

Typing rules

Variable
K, K0 ` θ : K Dom(θ) ⊂ B

K;E, x : ∀B.K0 . T ` x : θ(T)

Abstraction
K;E, x : T ` e : T ′

K;E ` fun x → e : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
K;E ` e : T B ∩ FVK(E) = ∅
K|B;E ` e : ∀B.K|B . T

Let
K;E ` e1 : σ K;E, x : σ ` e2 : T

K;E ` let x = e1 in e2 : T

Constant
K0 ` θ : K Tconst(c) = K0 . T

K;E ` c : θ(T)

Jacques Garrigue — Proving OCaml’s type system? 11

Engineering formal metatheory

Brian Aydemir, Arthur Charguéraud, Benjamin C.

Pierce, Randy Pollack, Stephanie Weirich [POPL08]

Proving soundness for various type systems (F≤, ML,

CoC) in Coq

Two main ideas to avoid renaming:

– Locally nameless definitions

– Co-finite quantification

Jacques Garrigue — Proving OCaml’s type system? 12

Locally nameless definitions

• α-conversion is a pain

• de Bruijn indices in derivations not so nice

Idea: use de Bruijn indices only for bound variables in

terms (or type schemes), and name free variables.

x /∈ Dom(E) ∪ FV(t) E, x:S ` tx : T

E ` λt : S → T

Jacques Garrigue — Proving OCaml’s type system? 13

Co-finite quantification

• we need to change non-locally bound names

Idea: quantify bound names universally, using a co-finite

exclusion set

∀x 6∈ L E, x:S ` tx : T

E ` λt : S → T

Intuition: L should be a superset of Dom(E) ∪ FV(T),

so that there is no conflict, but we can grow L as needed

when transforming proofs.

Jacques Garrigue — Proving OCaml’s type system? 14

Example with weakening

Usually weakening requires renaming if x ∈ Dom(E′)

x /∈ Dom(E) ∪ FV(t)
E, x:S ` tx : T

E ` λt : S → T
−→

y /∈ Dom(E, E′) ∪ FV(t)
E, E′, y:S ` ty : T

E, E′ ` λt : S → T

No renaming needed if we enlarge L !

∀x /∈ L E, x:S ` tx : T

E ` λt : S → T
−→

∀x /∈ L ∪ Dom(E′)
E, E′, x:S ` tx : T

E, E′ ` λt : S → T

Jacques Garrigue — Proving OCaml’s type system? 15

Co-finite quantification and ML let

The translation of ML’s let is a bit more involved:

E ` t1 : T1 ᾱ ∩ FV(E) = ∅ E, x:∀ᾱ.T1 ` t2 : T

E ` let x = t1 in t2 : T

becomes

∀ᾱ /∈ L1 E ` t1 : T ᾱ
1 ∀x /∈ L2 E, x:∀|ᾱ|T1 ` tx2 : T

E ` let t1 in t2 : T

The only condition on ᾱ is the derivability of E ` t1 : T ᾱ
1

Jacques Garrigue — Proving OCaml’s type system? 16

Example with weakening

Again, without co-finite quantification, one has to rename the ᾱ if E
grows, as they may be referred by new bindings. This is particularly
stupid as the new bindings do not contribute to the derivation.

An alternative approach would be to explictly consider only relevant
bindings.

E ` t1 : T1 ᾱ ∩ FV(E|FV(t1)
) = ∅ E, x:∀ᾱ.T1 ` t2 : T

E ` let x = t1 in t2 : T

The co-finite approach, where the constraint on ᾱ is left implicit, is
much smarter.

Jacques Garrigue — Proving OCaml’s type system? 17

Engineering formal metatheory

Proofs are extremely short.

– Thanks to clever automation of the notion of freshness used by
co-finite quantification, maintaining the conditions is easy.

– Many simple lemmas are required, but they are about types and
terms, not derivations.

– Renaming inside derivations is very rarely needed. Soundess of
F≤ or ML doesn’t involve it.

– It is claimed that renaming lemmas for derivations can be
obtained from substitution lemmas if needed.

Jacques Garrigue — Proving OCaml’s type system? 18

Typing rules (co-finite) A

Variable
K, K0 ` θ : K Dom(θ) ⊂ B

K;E, x : ∀B.K0 . T ` x : θ(T)

Abstraction
K;E, x : T ` e : T ′

K;E ` fun x → e : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Variable
K, Kᾱ

0 ` θ : K Dom(θ) = ᾱ

K;E, x : K0 . T ` x : T θ(ᾱ)

Abstraction
∀x 6∈ L K;E, x : T ` ex : T ′

K;E ` λe : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Jacques Garrigue — Proving OCaml’s type system? 19

Typing rules (co-finite) B

Generalize
K;E ` e : T B ∩ FVK(E) = ∅
K|B;E ` e : ∀B.K|B . T

Let
K;E ` e1 : σ K;E, x : σ ` e2 : T

K;E ` let x = e1 in e2 : T

Constant
K0 ` θ : K Tconst(c) = K0 . T

K;E ` c : θ(T)

Generalize
∀ᾱ 6∈ L K, Kᾱ

o ;E ` e : T ᾱ

K;E ` e : K0 . T

Let ∀x 6∈ L
K;E ` e1 : σ K;E, x : σ ` ex

2 : T

K;E ` let e1 in e2 : T

Constant
Kᾱ

0 ` θ : K Tconst(c) = K0 . T

K;E ` c : T θ(ᾱ)

Jacques Garrigue — Proving OCaml’s type system? 20

Differences with proof for ML

Modifications are massive

– from a total of 970 lines for Core ML, 259 were modified and
1290 were added (excluding the 653 lines for instance domain
proofs)

– the main technical modification was converting iterated
substitutions into simultaneous ones

– used signatures and functors to allow instanciating the
framework

– allowed adding constants and delta-rules modularly

Following the original proof plan, framework proofs were
straightforward. Instance domain proofs were harder.

Jacques Garrigue — Proving OCaml’s type system? 21

Simultaneous substitution

While opening local variables in a type scheme was already a
simultaneous operation, global variable substitution was incremental.

Lemma typ_subst_open : forall (X:var) (U T:typ) (Ts:list typ),
type U ->
typ_subst X U (typ_open T Ts) =
typ_open (typ_subst X U T) (List.map (typ_subst X U) Ts).

Lemma typ_subst_open : forall (S:env typ) (T:typ) (Ts:list typ),
env_prop type S ->
typ_subst S (typ_open T Ts) =
typ_open (typ_subst S T) (List.map (typ_subst S) Ts).

The change was easy, using the environment type, but dozens of
lemmas required modification.

Jacques Garrigue — Proving OCaml’s type system? 22

Kinding proofs

Definition well_subst (K K’:env kind) (S:env typ) :=
forall (Z:var) (k:kind), binds Z k K ->

well kinded

well kinded K’ k (typ fvar Z) =

exists k’, binds Z k’ K’ ∧ entails k’ k

K’ (kind_subst S k) (typ_subst S (typ_fvar Z)).

Lemma well_kinded_subst: forall S K K’ k T,
well_subst K K’ S ->
well_kinded K k T ->
well_kinded K’ (kind_subst S k) (typ_subst S T).

Lemma well_subst_fresh : forall K K’ K’’ S Ys L1 M,
well_subst (K & K’ & K’’) (K & map (kind_subst S) K’’) S ->
fresh (L1 ∪ dom S ∪ dom (K & K’’)) (length K0) Ys ->
well_subst (K & K’ & K’’ & kinds_open_vars K0 Ys)

(K & map (kind_subst S) (K’’ & kinds_open_vars K0 Ys)) S.

Jacques Garrigue — Proving OCaml’s type system? 23

Constraint domain and constants

Module Type CstrIntf.
Parameter cstr : Set.
Parameter valid : cstr -> Prop.
Parameter entails : cstr -> cstr -> Prop.
Parameter entails_refl : forall c, entails c c.
Parameter entails_trans : forall c1 c2 c3,

entails c1 c2 -> entails c2 c3 -> entails c1 c3.
Parameter unique : cstr -> var -> Prop.

End CstrIntf.

Module Type CstIntf.
Parameter const : Set.
Parameter arity : const -> nat.

End CstIntf.

Jacques Garrigue — Proving OCaml’s type system? 24

Modularity and delta-rules

Module MkDefs(Cstr:CstrIntf)(Const:CstIntf).
...
Module Type DeltaIntf.

Parameter type : Const.const -> sch.
Parameter rule : nat -> trm -> trm -> Prop.
Parameter term : forall n t1 t2 tl,

rule n t1 t2 -> list_for_n term n tl ->
term (trm_inst t1 tl) / term (trm_inst t2 tl).

End DeltaIntf.
Module MkJudge(Delta:DeltaIntf).

Inductive typing : kenv -> env -> trm -> typ -> Prop := ...
Inductive value : nat -> trm -> Prop := ...
Inductive red : trm -> trm -> Prop := ...

End MkJudge.
End MkDef.

Jacques Garrigue — Proving OCaml’s type system? 25

Soundness proof

Module MkSound(Cstr:CstrIntf)(Const:CstIntf).
Module Infra := MkInfra(Cstr)(Const).
Import Infra Defs.
Module Mk2(Delta:DeltaIntf).
Module JudgInfra := MkJudgInfra(Delta).
Import JudgInfra Judge.
Module Type SndHypIntf.
Parameter const_closed : forall c, sch_fv (Delta.type c) = {}.
Parameter delta_typed : forall n t1 t2 tl K E T, ...
Parameter const_arity_ok : forall c vl K T, ...
Parameter delta_arity : forall n t1 t2, ...

End SndHypIntf.
Module Mk3(SH:SndHypIntf).
...

Jacques Garrigue — Proving OCaml’s type system? 26

Soundness results

Lemma preservation : forall K E t t’ T,
K ; E |= t ~: T ->
t --> t’ ->
K ; E |= t’ ~: T.

Lemma progress := forall K t T,
K ; empty |= t ~: T ->

value t
∨ exists t’, t --> t’.

Lemma value_irreducible : forall n t t’,
value n t -> ~(t --> t’).

Jacques Garrigue — Proving OCaml’s type system? 27

Constraint domain proofs

Module Cstr. ... End Cstr.
Module Const. ... End Const.
Module Sound1 := MkSound(Cstr)(Const).
Import Sound1 Infra Defs.

Module Delta. ... End Delta.
Module Sound2 := Mk2(Delta).
Import Sound2 JudgInfra Judge.

Module SndHyp.
...

End SndHyp.
Module Soundness := Mk3(SndHyp).

Jacques Garrigue — Proving OCaml’s type system? 28

Structural polymorphism

Proved soundess of structural polymorphism, including

the constraint domain for polymorphic variants and

records.

– reusing proofs and tactics was a tremendous help

– recursive types were not a problem at all!

– using functors for constructing the framework did

work, but it is heavy

Jacques Garrigue — Proving OCaml’s type system? 29

Adding a non-structural rule

Kind GC
K, K′;E ` e : T FVK(E, T) ∩ DomK′ = ∅

K;E ` e : T

– Formalizes the intuition that kinds not appearing in

either E or T are not relevant to the typing judgment

– This cannot be proved in the original type system, as

all kinds used in a derivation must be in K from the

beginning

Jacques Garrigue — Proving OCaml’s type system? 30

Co-finite non-structural Kind GC

We need to make it co-finite too.

Kind GC
∀ᾱ 6∈ L K, Kᾱ

0 ;E `GC e : T

K;E `GC e : T

– framework proofs are still easy

– domain proofs become much harder:

inversion no longer works directly

– a real nightmare...

Jacques Garrigue — Proving OCaml’s type system? 31

Looking for an inversion lemma

We would like to prove the following lemma:

K;E `GC e : T ⇒ ∃K′, K, K′;E ` e : T

It is true in the original (non co-finite) type system.

It cannot be proved in the co-finite system, as co-finite

quantification in Gen does not commute with Kind GC.

This discrepancy is very counter-intuitive. . .

Jacques Garrigue — Proving OCaml’s type system? 32

Canonical derivations

I could solve the problem months later, by showing that

in canonical derivations, Kind GC can be restricted to

appear either at the end or just above Let.

– Knowing this we can relax the proof requirement for δ-rules, by
assuming they only apply to canonical derivations not ending
with Kind GC.

– We can then directly reuse domain proofs for the original system.

– Proving the canonization lemma requires a renaming lemma for
term variables (to make quantifiers commute). It was actually
easier to prove it from scratch than to attempt to reuse term
substitution (as suggested in the paper).

Jacques Garrigue — Proving OCaml’s type system? 33

OCaml’s subtyping

– mainly structural (objects and variants)

– variance annotations to allow subtyping under type constructors

– recent additions: private abbreviations and monomorphisation of
polymorphic methods

– all subtyping is explicit

– as types may contain type variables, subtyping is done in two
phases, avoiding interference with type inference

◦ structural comparison of types

◦ unification of types that didn’t match a subtyping rule

– no formal specification! (and easy to get wrong)

Jacques Garrigue — Proving OCaml’s type system? 34

A formalization

Subtyping assumes a set E of type equations.

E ` T1 ≤ T2

Subsumption can be defined as follows.

Subtype
E ` e : σ(T1) E ` T1 ≤ T2 σ |= E

E ` (e : T1 :> T2) : σ(T2)

where σ |= E means that σ is an unifier of E.

Jacques Garrigue — Proving OCaml’s type system? 35

Basic subtyping (with private abbreviations)

Equal
T1 = T2 ∈ E

E ` T1 ≤ T2

Tconstr
∀i ∈ P (t) E ` Ti ≤ T ′

i ∀j ∈ N(t) E ` T ′
j ≤ Tj

∀k ∈ I(t) Tk = T ′
k ∈ E

E ` (T1, . . . , Tn) t ≤ (T ′
1, . . . , T ′

n) t

Private
E ` T [T1...Tn/α1...αn] ≤ T ′ type (α1, ..., αm) t = private T

E ` (T1, . . . , Tn) t ≤ T ′

Jacques Garrigue — Proving OCaml’s type system? 36

Recursive polymorphic variants

We need two extra environments, K for kinds and S for

memoizing subtyping between kinded variables.

Variant
K(α) = (L, U, R) K(β) = (L′, U ′, R′) U ⊂ L′

∀l ∈ U,∀(l, T) ∈ R, ∀(l, T ′) ∈ R′, K;E;S, α ≤ β ` T ≤ T ′

K;E;S ` α ≤ β

Recursion
α ≤ β ∈ S

K;E;S ` α ≤ β

Jacques Garrigue — Proving OCaml’s type system? 37

Polymorphic methods

Type equations are prefixed by bijections of universal

variables.

E ::= ∅ | E, T1 = T2 . . . | E, ū ↔ v̄.E

Poly
E1 ` T1 ≤ T2 ū ↔ v̄.E1 ∈ E

E ` ∀ū.T1 ≤ ∀v̄.T2

InstPoly
E ` T1[ᾱ/ū] ≤ T2

E ` ∀ū.T1 ≤ ∀.T2

Jacques Garrigue — Proving OCaml’s type system? 38

Properties

Reflexivity For any type T , T = T ` T ≤ T .

Trivial.

Transitivity If E1 ` T1 ≤ T2 and E2 ` T2 ≤ T3 and

σ |= E1 ∪ E2, then there is σ |= E3 s.t. E3 ` T1 ≤ T3.

False! For instance, assuming type t = private int,

∅ ` t ≤ int and int = α ` int ≤ α and t = α ` t ≤ α

but there is no σ s.t. both σ |= int = α and σ |= t = α.

Jacques Garrigue — Proving OCaml’s type system? 39

Properties

Weak transitivity If E1 ` T1 ≤ T2 and E2 ` T2 ≤ T3 and

σ |= E1 ∪ E2, and Img(σ) ⊂ Var , then there is σ |= E3 s.t.

E3 ` T1 ≤ T3.

Monotony If E ` T1 ≤ T2 and σ′ ◦ σ |= E, then there is

E′ s.t. E′ ` σ(T1) ≤ σ(T2) and σ′ |= E′.

Proved both for the base system including private

abbreviations.

Jacques Garrigue — Proving OCaml’s type system? 40

Properties of inference

Defined a algorithm subinf, producing E from T1 an T2.

Soundness If subinf T1 T2 = Some E then E ` T1 ≤ T2.

Proved for basic system, and adding recursive kinds.

Completeness If E ` T1 ≤ T2 then subinf T1 T2 =

Some E, otherwise subinf T1 T2 = None.

Proved only for basic system. Termination is a pain. . . .

Jacques Garrigue — Proving OCaml’s type system? 41

Proofs

– used a simpler formalization, eliminating E

σ ` T1 ≤ T2 ⇔ ∃E, σ |= E ∧ E ` T1 ≤ T2

– made the relation symmetrical (adding σ ` T1 ≥ T2),

to allow induction.

– definitions are quite verbose (54 lines for subtyping)

– soundness is just tedious, but (weak) transitivity and

completeness are not so easy.

Jacques Garrigue — Proving OCaml’s type system? 42

Conclusion

– Trying to specify and prove OCaml’s type system

– Interested not only in soundness, but in properties of

inference too

– No hope to prove the current implementation, but

could maybe create a reference implementation

– Thanks to Arthur for his nice proofs and libraries

