Tracking injectivity and nominality beyond abstraction

Jacques Garrigue

Abstract

Seven years ago, a subtle unsoundness was discovered by
Yallop in OCaml’s type system [5]. It involved a combina-
tion of GADTs and abstraction, and uncovered how wrong
assumptions about the injectivity of abstract types could
lead to unsound type definitions. While it has been fixed
by moving OCaml’s variance analysis from a naive view
to a more complex one, which involves six flags, includ-
ing one for injectivity, the new flags have not been given
surface syntax [1]. In this presentation, I would like to
showcase two potential solutions to the problem of injec-
tivity (two equal types must also have equal parameters),
and the related problem of nominality (types whose imple-
mentation may only be a concrete type). The first one is
very simple: it adds surface syntax for the injectivity flag,
allowing one to stipulate that an abstract type is injective
in one of its parameters. The second one is more involved,
and attempts to track the nominality of type definitions.
Currently, the only nominal type definitions in OCaml
are concrete types (records and variants), built-in types,
and types defined in the current module (excluding public
type abbreviations). By tracking the nominality of types,
it becomes possible to strengthen GADT unification, and
infer more type equalities and incompatibilities.

1 Injectivity and GADTSs

If you are an adept of OCaml GADTSs, there is a reason-
able probability that you have encountered the following
problem.

module Vec : sig
type +’a t
val make : int -> (int -> ’a) -> ’a t
val get : ’a t -> int -> ’a
end = struct
type ’a t = int -> ’a

let make n f = Array.get (Array.init n f)
let get £ = f
end
type _ ty =
| Int : int ty
| Vec : ’a ty -> ’a Vec.t ty
Error: In this definition, a type wariable
cannot be deduced from the type parameters.

In [1] we explained why the functorized version of this
code would be unsound. But of course, the problem is

not limited to functors, and a slight variation of this code
exhibits this unsoundness.

type (_,_) eq = Refl : (’a,’a) eq

module Vec : sig type +’a t
val eq : (Pa t, ’b t) eq end

= struct type ’a t = unit 1let eq = Refl end
type _ ty = ...

let coe : type a b. (a,b) eq -> a ty -> b ty =
fun Refl x > x

(* same as above *)

let eq_int_any : type a. (int, a) eq =
let t : a Vec.t ty = coe Vec.eq (Vec Int) in
let Vec Int = vec_ty in Refl

If the above code were typable, whereas t is not injective,
we would have a proof that int is equal to any type. And
since it is in general very difficult to check no equality such
as Vec.eq is available through a side-channel, we need a
way to protect ourselves against potentially non-injective
definitions.

Oleg Kiselyov [2] recently described a classical work-
around to allow the definition of ty, even without injec-
tivity, through an existential encoding.

type _ ty =
| Int : int ty
| Vec : (°b, ’a Vec.t) eq * ’a ty -> ’b ty

The idea here is that ’a is no longer a normal variable
instantiated through unification, but an existential vari-
able, which can only be deduced from ’b through exter-
nal means. This actually corresponds to the behavior
of GADTs in GHC [4], where GADT cases are defined
through type equations. However, this approach has sev-
eral drawbacks. The first one is that it does not apply to
constrained types [1], since they cannot contain existen-
tial variables. We will explain the other drawbacks at the
end of this abstract.

2 Injectivity annotations

By observing a reasonable code sample, one can easily
convince oneself that a large majority of non abstract type
definitions are injective. This is the case of all concrete
definitions (records or variants), and also of all type ab-
breviations for which the parameters occur at an injective
position in the body. The only exception is phantom pa-
rameters in type abbreviations. So the real problem is

not so much a lack of injectivity, but the lack of a way to
track it in abstract types.
This first extension! does just that.

module Vec sig type +!’a t . end = ...

The ! annotation on type parameters indicates that they
are injective. It is checked during module signature sub-
typing, and variance inference propagates it to other def-
initions, so that ty will be accepted.

Injectivity annotations are only required on abstract
types and private row types. Injectivity is automatically
inferred for type abbreviations, so that annotations will
only enforce a check on the result of inference. And, as
written above, concrete types are always injective.

While the above description may look trivial, the han-
dling of constrained type parameters had to be improved
to make inference work properly. The basic idea is sim-
ilar to variance inference, a constrained type parameter
should be injective if all type variables with an injective
occurrence in the parameter have also an injective occur-
rence in the body of the type.

type !’a t = ’b constraint ’a =< b : ’b >
type !’a u = ’b constraint
’a =<b: ’b; c ’c >

Error: In this definition, expected parameter
variances are not satisfied.

Here t is injective, since the only type variable in the
constraint is ’b, which appears in the body. But u is not
injective, since ’c does not appear in the body.

type _ v = unit

type !’a w = int constraint ’a = ’b v

A parameter containing only non-injective occurrences is
injective. After expansion of v, ’a contains no free vari-
ables, so assuming its injectivity generates no contradic-
tion.

The problem is even more subtle when there are non-
injective abstract types involved.

module M : sig type ’a t end =
struct type ’a t = ’a list end
type !’a u = int constraint ’a = ’b M.t
Error: In this definition, expected parameter
variances are not satisfied.

In the same way as we do for variance inference, inside
constrained parameters we should think in terms of po-
tential injectivity rather than verified injectivity. Since
we do not track it explicitly, we consider all occurences to
be potentially injective, except vanishing ones, that dis-
appear when expanding type abbreviations. It is possible
to work around the discrepancy between the handling of
the parameters and body by using extra constraints.

’b constraint ’a = <b : ’b>
constraint ’b = ’c M.t

TPR#9500: Add injectivity annotations, https://github.com/
ocaml/ocaml/pull/9500

type !’a u =

3 Nominal types

While tracking injectivity solves some limitations of the
combination of GADTs and abstract types, it does not
solve all of them. Namely, it says nothing about what to
do with types whose head constructors are distinct, but
for which we do not have a proof that they do not actually
hide the same definition (so that there might exist a proof
that they are actually compatible).

Again, due to the OCaml module system, this may oc-
cur in a variety of situations. A common one is when try-
ing to unify an abstract type with the index of a GADT
constructor.

module M : sig type t type !’a u end =
struct type t = int type ’a u = ’a list end
let £ : (int, M.t) eq -> M.t -> int =

fun Refl x -> x

let g : (bool, M.t) eq -> ’a =
function _ >

Warning 8: pattern-matching is not exhaustive.
This case is mot matched: Some Refl

let hl : (int list, int M.u) eq —->
int M.u -> int list =
fun Refl x -> x
Error: This expression has type int M.u

but an expression was expected of type int list

let h2 : (int list, M.t M.u) eq -> M.t -> int =
fun Refl x -> x
Error: This expression has type M.t
but an expression was expected of type int

In the case of non-parametric abstract types, the type
checker is able to add local equations to the environment,
so that f is typable. However, there is no way to track the
fact M.t is incompatible with bool, so that g’s pattern-
matching is deemed non-exhaustive. If we move to para-
metric abstract types, the situation is even worse. OCaml
is unable to properly keep the information that int list
and int M.u are equal, so that hl is untypable. In par-
ticular it is unable to infer that M.u itself should be equal
to 1ist2, which combined with injectivity would allow to
type h2.

Concerning the first problem of comparability or, more
specifically, separability, OCaml is only able to distinguish
builtin types, types defined in the current module (i.e.,
types that cannot hide any sharing of representation), and
incompatible type definitions (according to the contents
of the definition). In particular this means that even con-
crete type definitions may be compatible even if they were
defined independently.

module N = struct type t = A type u = A end
let £ : (N.t, N.u) eq option -> unit =
function None -> ()

2Equating u and list would be wrong if for instance the actual
definition was type ’a u = int list

Warning 8: pattern-matching is not exzhaustive.
This case is not matched: Some Refl

The second problem is that the environment can only be
extended by equations defining types, i.e. not equations
on applied type constructors. Fixing this limitation would
require major changes in the type inference algorithm,
extending with a notion of equations derived from a set
of equations. We will not consider this approach here.

The third problem is related to the ability to infer exact
type definitions for parametric types. While this is impos-
sible in general, as this corresponds to higher-order unifi-
cation, which is known to be undecidable, the situation is
different if we know that M.u actually abstracts a concrete
type definition. This is because concrete type definitions
are always generative, where generativity means that the
equality of two generative types implies the equality of
their head constructors. Since they can only be exported
with exactly the same type parameters, it is sound to add
the equation type ’a M.u = ’a list to the typing en-
vironment, which would allow to typecheck both h1 and
h2

We solve this by introducing a new concept of nominal
types®, through annotations on type declarations. They
come in two forms:

type ’a u [@@nominall
type ’a t [@OGnominal "M.t"]

The first form says that u is nominal. u is allowed to be
nominal if it is a new abstract definition (i.e., an abstract
definition inside an implementation, which cannot hide
another OCaml definition), or if it abstracts a nominal
or concrete type definition. The second form adds an
explicit name, here "M.t", which allows to separate it
from other nominal types (all built-in types being such
named nominals). This name must be present since the
original definition of the type, and can be forgotten in
abstract exports, but not in concrete ones?. This allows
us to remove the current special handling of built-in and
local abstract types.

This notion of nominal type extends that of matchable
type in Haskell [3]. A type is matchable if it is injective
and generative, meaning that an unnamed nominal type
is matchable. Due to abstraction, generativity alone only
allows to deduce equalities, not incompatibilities. The
addition of an explicit name allows to track separability, as
two nominal types with different names (or a named type
and an an unnamed concrete type) are now separable,
which allows to refine the exhaustivity check of pattern-
matching.

All our previous examples are now typable, without
warning (i.e., the exhaustivity could be verified).

30Caml RFC #4: Nominal (abstract) types, https://github.
com/ocaml/RFCs/pull/4; PR#9042, https://github.com/ocaml/
ocaml/pull/9042.

4This is needed to allow one to separate between unnamed con-
crete types and named abstract types.

module M : sig
type t [@@nominal "int"]
type ’a u [@@nominal]
end = struct
type t = int
type ’a u =
end

’a list

let g : (bool, M.t) eq option -> unit =
function None -> ()

let hi (int 1list, int M.u) eq —>
int M.u -> int list =
fun Refl x -> x
let h2 : (int list, M.t M.u) eq -> M.t -> int =

fun Refl x -> x

Type-level terms It is known that examples involving
type-level terms can be handled by giving them a con-
crete representation. However, by using incompatibility,
together with the implicit injectivity of nominal types, we
need not rely on this representation.

module Nat = struct
type zero [@@nominal "zero"]
type ’n succ [@C@nominal "succ"]
end
type (’a,’n) vec =

| Nil (’a, Nat.zero) vec
| Cons : ’a * (’a,’n) vec —->
(’a,’n Nat.succ) vec
let head : (’a,’n Nat.succ) vec -> ’a =

function Cons (h,t) -> h

Contractiveness Nominality also implies contractive-
ness, which allows to define some fixpoints that couldn’t
be defined otherwise, as it is unsound to take the fix-
point of a non-contractive type®. A type (ai,...,q,) t
is contractive in «; if it does not act as a projection, i.e.
(a1,...,ap) t # a;. Here is an example where a nominal
type is used to build a fixpoint.

#rectypes;; (* Use equi-recursive types *)
module Fixpoint
(M : sig type ’a t [@@nominal] end) =
struct type fix = fix M.t end

module Nat =
Fixpoint(struct type ’a t = ’a option end)
module Nat : sig type fix = fixz option end

The resulting type Nat.fix is isomorphic to the natural
numbers.

Type witnesses We have already seen that an injec-
tivity annotation on Vec.t lets us define the type ty of
section 1. Using a nominality annotation is a bit heavier,

5See OCaml issue #5863, https://github.com/ocaml/ocaml/
issues/5863.

as we need to attach the name to a concrete definition,
but it also allows to define extractors.

module Vec : sig
type +’a t [@@nominal "vec"]

val make : int -> (int -> ’a) -> ’a t
val get : ’a t -> int -> ’a

end = struct
type ’a t =

Vec of (int -> ’a) [@@nominal "vec"]
let make n f =
Vec (Array.get (Array.init n f))
let get (Vec f) = £
end
type _ ty =
| Int : int ty
| Vec : ’a ty -> ’a Vec.t ty
let vec_arg = function Vec t -> t
val vec_arg : ’a Vec.t ty -> ’a ty

Here, the addition of a name allows to separate Vec.t
from int, making the pattern-matching in vec_arg ex-
haustive, which would not be the case with injectivity
alone.

Comparison with the existential encoding It turns
out that, if we were to use the existential encoding of
GADTs at the end of section 1, we wouldn’t even be able
to define vec_arg without a type annotation:

let vec_arg = function Vec (Refl, t) -> t
Error:
The type $Vec_’a would escape its scope

This is because the existential encoding does not allow to
infer the type of GADT patterns, only to check it. Yet,
this inference is used even inside the OCaml compiler to
avoid explicit type annotations.

Not only do we need an annotation, but we also need
an injectivity proof, which must be written inside the Vec
module.

vec_inj (’a Vec.t,’b Vec.t) eq -> (’a,’b) eq

Finally, with all those it only lets us define a non-
exhaustive version of vec_arg:

let vec_arg : type a. a Vec.t ty -> a ty =
function Vec (w, t) ->
let Refl = vec_inj w in t
Warning 8: pattern-matching is not exzhaustive.
This case %s not matched: Int

val vec_arg : ’a Vec.t ty -> ’a ty = <fun>

References

[1] Jacques Garrigue. On variance, injectivity, and
abstraction. In OCaml Meeting, Boston, Septem-
ber 2013. http://www.math.nagoya-u.ac.jp/
~garrigue/papers/.

2]

Oleg Kiselyov. That dreaded ‘a type variable can-
not be deduced’” GADT error. Mail to the caml-list,
April 2020. https://sympa.inria.fr/sympa/arc/
caml-1ist/2020-04/msg00010.html.

Csongor Kiss, Tony Field, Susan Eisenbach, and Si-
mon Peyton Jones. Higher-order type-level program-
ming in Haskell. Proc. ACM Program. Lang., 3(ICFP),
July 2019.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schri-
jvers, and Martin Sulzmann. OutsideIn(X) Modu-
lar type inference with local assumptions. Journal of
Functional Programming, 21(4-5):333-412, September
2011.

Jeremy Yallop. Unexpected interaction between vari-
ance and GADTs. OCaml bug report, April 2013.
https://github.com/ocaml/ocaml/issues/5985.

