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Starting point : the Coqgen project

• Proving the correctness of the full OCaml type inference is hard

• We can prove it theoretically for subparts, but combining them is complex

• Writing a type checker for the typed syntax tree might help, but still suffers the
same difficulties

• Alternative approach: ensure that the generated typed syntax trees enjoys type
soundness by translating them into another type system, here Coq
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Soundness by translation

P
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OCaml Coq

[[x ]]

[[P]]

P(x) [[P]]([[x ]])

Input

Program

Output

If for all P : τ → τ ′ and x : τ

• P translates to [[P]], and ` [[P]] : [[τ → τ ′]]

• x translates to [[x ]], and ` [[x ]] : [[τ ]]

• [[P]] applied to [[x ]] evaluates to [[P(x)]]

• [[·]] is injective (on types)

then the soundness of Coq’s type system implies the
soundness of OCaml’s evaluation
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Translating GADTs

Our backend is already able to translate many features

• Core ML : λ-calculus with polymorphism and recursion

• algebraic data types

• references and exceptions

• while and for loops, lazy values, etc...

However, GADTs present specific challenges

• generation of equations between types

• usage of these equations for coercion

• pruning of unreachable branches

In this presentation we study how to do it, using hand-translated code fragments.
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A classical example
GADTs allow one to encode the length of vectors.

(* encoding of natural numbers into types *)
type zero = Zero
type 'a succ = Succ of 'a
type (_,_) vec =

Nil : ('a, zero) vec
| Cons : 'a * ('a,'n) vec -> ('a, 'n succ) vec

(* map perserves the length *)
let rec map : type a b n. (a -> b) -> (a,n) vec -> (b,n) vec =
fun f -> function
| Nil -> Nil
| Cons (a, l) -> Cons (f a, map f l)

(* head is exhaustive on vectors of length at least 1 *)
let head : type a n. (a,n succ) vec -> a = function Cons (a, _) -> a
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The naive translation

We just translate GADTs to Coq inductive types, and rely on Coq’s pattern matching
construct for equation handling.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) : Type -> Type :=

| Nil : vec A zero
| Cons n : A -> vec A n -> vec A (succ n).

Fixpoint map (A B n : Type) (f : A -> B) (l : vec A n):=
match l in vec _ n return vec B n with
| Nil _ => Nil B
| Cons _ n a l => Cons B n (f a) (map A B n f l)
end.

We only need to annotate the match construct explicitly.
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What about head ?

Fail Definition head A n (l : vec A (succ n)) : A :=
match l with
| Cons _ n a l => a
end.

Non exhaustive pattern-matching: no clause found for pattern
Nil

The naive translation of head fails.

• There is no way to prove that zero is different from succ n inside Type.

Yet it works if we define vec with its length index in nat, as Z and S n differ.

Inductive vec (A : Type) : nat -> Type := ...
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The difference between GADTs and inductive types

• GADT indices are simultaneoulsy types and first-order terms.

Pattern-matching results in unification:
• generating equations in case of success;
• pruning unreachable branches in case of failure.

• Indices of inductive types are either types or values of a type.

Pattern-matching results in:
• substitution if the in pattern syntax was used;
• pruning of unreachable branches, by discriminating on the head constructor, if the

index belongs to an inductive type.

• Changing an index from Type to a specific inductive type is not always sufficient,
as GADT indices are essentially both.
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Intensional translation

Our solution to eat our cake and keep it, is to give both syntactical and semantical
representations to OCaml types.

Require Import ssreflect.
Inductive ml_type : Set :=

| ml_int
| ml_bool
| ml_arrow of ml_type & ml_type
...
| ml_zero
| ml_succ of ml_type
| ml_vec of ml_type & ml_type.

Here we use ssreflect syntax, closer to ML.
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Extensional definitions

Type definitions still need to be translated.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) (n : ml type) :=
| Nil of n = ml_zero
| Cons m of n = ml_succ m & A & vec A m.

They differ from the naive translation in that

• Equations are explicit. (Avoids convoy pattern.)

• Type parameters are in Type if used for values, in ml_type if used in equations, or
duplicated if both.
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Type interpretation function

The two tranlations are connected by an interpretation function, which must be fully
computable.

Fixpoint coq_type (T : ml type) : Type :=
match T with
| ml_int => Int63.int
| ml_bool => bool
| ml_arrow T1 T2 => coq_type T1 -> coq_type T2
...
| ml_zero => zero
| ml_succ T1 => succ (coq_type T1)
| ml_vec T1 T2 => vec (coq_type T1) T2
end.

Note how in the ml_vec case only the first type parameter is interpreted.
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Translation of terms

The translation is a bit more verbose. (Lots of coq_type needed)

Fixpoint map (T1 T2 T3: ml_type) (f: coq_type T1 -> coq_type T2)
(l: vec (coq_type T1) T3) : vec (coq_type T2) T3 :=

match l in vec _ n return vec (coq_type T2) n with
| Nil _ => Nil _
| Cons _ m a l => Cons _ m (f a) (map T1 T2 _ f l)
end.

Definition head (T1 T2 : ml_type) (l : vec (coq_type T1) (ml_succ T2))
: coq_type T1 :=
match l with
| Nil _ _ H => match H with end
| Cons _ _ _ _ a _ => a
end.

However we are now able to disprove unreachable branches.
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Injectivity of type constructors

This translation also supports injectivity, contrary to the naive one.

type (_, _) eq = Refl : ('a,'a) eq
let succ_inj : type n1 n2. (n1 succ, n2 succ) eq -> (n1, n2) eq

= function Refl -> Refl

One just needs to apply add hoc projections.

Inductive eqw (T1 T2 : ml_type) := Refl of T1 = T2.
Definition eqw_eq [x y] (w : eqw x y) : x = y :=
match w with Refl _ _ H => H end.

Definition proj_ml_succ defT T :=
if T is ml_succ T1 then T1 else defT.

Definition succ_inj n1 n2 (w : eqw (ml_succ n1) (ml_succ n2)) : eqw n1 n2 :=
Refl _ _ (f_equal (proj_ml_succ n1) (eqw_eq w)).
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Mixed use of existential type variables

While type parameters can be both intensional and extensional, existential type
variables create problems with recursion.

type _ hlist = (* Heterogeneous list *)
| HNil : zero hlist
| HCons : 'a * 'b hlist -> ('a * 'b) hlist

Inductive hlist (coq type : ml type -> Type) T :=
| HNil of T = ml_zero
| HCons T1 T2 of
T = ml_pair T1 T2 & coq type T1 & hlist ct T2.

#[bypass_check(guard)]
Fixpoint coq_type (T : ml type) : Type := ...
| ml_hlist T1 => hlist coq type T1
...

Since hlist depends now on coq_type, we need to bypass the termination check.
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Towards a type-sound transpiler from OCaml to Coq
Automating the translation of GADTs still requires

• Obtaining a trace of how the compiler generated equations

• And also where and how it uses them

• Neither is currently available in OCaml

Coqgen already supports many features, including side-effects.

• As a result, the translation of ml_arrow is

| ml_arrow T1 T2 => coq_type T1 -> M (coq_type T2)

for some monad M, requiring some bootstrapping too.

Many other open problems

• How to represent abstract types, as they may be not injective?

For more information see

http://www.math.nagoya-u.ac.jp/∼garrigue/cocti/
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