
Introduction Naive translation Intensional translation Conclusion

Interpreting OCaml GADTs into Coq

Jacques Garrigue, Takafumi Saikawa

Graduate School of Mathematics, Nagoya University

ML Workshop, September 15, 2022

1 / 16



Introduction Naive translation Intensional translation Conclusion

Starting point : the Coqgen project

• Proving the correctness of the full OCaml type inference is hard

• We can prove it theoretically for subparts, but combining them is complex

• Writing a type checker for the typed syntax tree might help, but still suffers the
same difficulties

• Alternative approach: ensure that the generated typed syntax trees enjoys type
soundness by translating them into another type system, here Coq

2 / 16



Introduction Naive translation Intensional translation Conclusion

Soundness by translation

P

x

OCaml Coq

[[x ]]

[[P]]

P(x) [[P]]([[x ]])

Input

Program

Output

If for all P : τ → τ ′ and x : τ

• P translates to [[P]], and ` [[P]] : [[τ → τ ′]]

• x translates to [[x ]], and ` [[x ]] : [[τ ]]

• [[P]] applied to [[x ]] evaluates to [[P(x)]]

• [[·]] is injective (on types)

then the soundness of Coq’s type system implies the
soundness of OCaml’s evaluation

3 / 16



Introduction Naive translation Intensional translation Conclusion

Translating GADTs

Our backend is already able to translate many features

• Core ML : λ-calculus with polymorphism and recursion

• algebraic data types

• references and exceptions

• while and for loops, lazy values, etc...

However, GADTs present specific challenges

• generation of equations between types

• usage of these equations for coercion

• pruning of unreachable branches

In this presentation we study how to do it, using hand-translated code fragments.

4 / 16



Introduction Naive translation Intensional translation Conclusion

A classical example
GADTs allow one to encode the length of vectors.

(* encoding of natural numbers into types *)
type zero = Zero
type 'a succ = Succ of 'a
type (_,_) vec =

Nil : ('a, zero) vec
| Cons : 'a * ('a,'n) vec -> ('a, 'n succ) vec

(* map perserves the length *)
let rec map : type a b n. (a -> b) -> (a,n) vec -> (b,n) vec =
fun f -> function
| Nil -> Nil
| Cons (a, l) -> Cons (f a, map f l)

(* head is exhaustive on vectors of length at least 1 *)
let head : type a n. (a,n succ) vec -> a = function Cons (a, _) -> a

5 / 16



Introduction Naive translation Intensional translation Conclusion

The naive translation

We just translate GADTs to Coq inductive types, and rely on Coq’s pattern matching
construct for equation handling.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) : Type -> Type :=

| Nil : vec A zero
| Cons n : A -> vec A n -> vec A (succ n).

Fixpoint map (A B n : Type) (f : A -> B) (l : vec A n):=
match l in vec _ n return vec B n with
| Nil _ => Nil B
| Cons _ n a l => Cons B n (f a) (map A B n f l)
end.

We only need to annotate the match construct explicitly.

6 / 16



Introduction Naive translation Intensional translation Conclusion

What about head ?

Fail Definition head A n (l : vec A (succ n)) : A :=
match l with
| Cons _ n a l => a
end.

Non exhaustive pattern-matching: no clause found for pattern
Nil

The naive translation of head fails.

• There is no way to prove that zero is different from succ n inside Type.

Yet it works if we define vec with its length index in nat, as Z and S n differ.

Inductive vec (A : Type) : nat -> Type := ...

7 / 16



Introduction Naive translation Intensional translation Conclusion

What about head ?

Fail Definition head A n (l : vec A (succ n)) : A :=
match l with
| Cons _ n a l => a
end.

Non exhaustive pattern-matching: no clause found for pattern
Nil

The naive translation of head fails.

• There is no way to prove that zero is different from succ n inside Type.

Yet it works if we define vec with its length index in nat, as Z and S n differ.

Inductive vec (A : Type) : nat -> Type := ...

7 / 16



Introduction Naive translation Intensional translation Conclusion

The difference between GADTs and inductive types

• GADT indices are simultaneoulsy types and first-order terms.

Pattern-matching results in unification:
• generating equations in case of success;
• pruning unreachable branches in case of failure.

• Indices of inductive types are either types or values of a type.

Pattern-matching results in:
• substitution if the in pattern syntax was used;
• pruning of unreachable branches, by discriminating on the head constructor, if the

index belongs to an inductive type.

• Changing an index from Type to a specific inductive type is not always sufficient,
as GADT indices are essentially both.

8 / 16



Introduction Naive translation Intensional translation Conclusion

The difference between GADTs and inductive types

• GADT indices are simultaneoulsy types and first-order terms.

Pattern-matching results in unification:
• generating equations in case of success;
• pruning unreachable branches in case of failure.

• Indices of inductive types are either types or values of a type.

Pattern-matching results in:
• substitution if the in pattern syntax was used;
• pruning of unreachable branches, by discriminating on the head constructor, if the

index belongs to an inductive type.

• Changing an index from Type to a specific inductive type is not always sufficient,
as GADT indices are essentially both.

8 / 16



Introduction Naive translation Intensional translation Conclusion

Intensional translation

Our solution to eat our cake and keep it, is to give both syntactical and semantical
representations to OCaml types.

Require Import ssreflect.
Inductive ml_type : Set :=

| ml_int
| ml_bool
| ml_arrow of ml_type & ml_type
...
| ml_zero
| ml_succ of ml_type
| ml_vec of ml_type & ml_type.

Here we use ssreflect syntax, closer to ML.

9 / 16



Introduction Naive translation Intensional translation Conclusion

Extensional definitions

Type definitions still need to be translated.

Inductive zero := Zero.
Inductive succ (n : Type) := Succ of n.
Inductive vec (A : Type) (n : ml type) :=
| Nil of n = ml_zero
| Cons m of n = ml_succ m & A & vec A m.

They differ from the naive translation in that

• Equations are explicit. (Avoids convoy pattern.)

• Type parameters are in Type if used for values, in ml_type if used in equations, or
duplicated if both.

10 / 16



Introduction Naive translation Intensional translation Conclusion

Type interpretation function

The two tranlations are connected by an interpretation function, which must be fully
computable.

Fixpoint coq_type (T : ml type) : Type :=
match T with
| ml_int => Int63.int
| ml_bool => bool
| ml_arrow T1 T2 => coq_type T1 -> coq_type T2
...
| ml_zero => zero
| ml_succ T1 => succ (coq_type T1)
| ml_vec T1 T2 => vec (coq_type T1) T2
end.

Note how in the ml_vec case only the first type parameter is interpreted.

11 / 16



Introduction Naive translation Intensional translation Conclusion

Translation of terms

The translation is a bit more verbose. (Lots of coq_type needed)

Fixpoint map (T1 T2 T3: ml_type) (f: coq_type T1 -> coq_type T2)
(l: vec (coq_type T1) T3) : vec (coq_type T2) T3 :=

match l in vec _ n return vec (coq_type T2) n with
| Nil _ => Nil _
| Cons _ m a l => Cons _ m (f a) (map T1 T2 _ f l)
end.

Definition head (T1 T2 : ml_type) (l : vec (coq_type T1) (ml_succ T2))
: coq_type T1 :=
match l with
| Nil _ _ H => match H with end
| Cons _ _ _ _ a _ => a
end.

However we are now able to disprove unreachable branches.

12 / 16



Introduction Naive translation Intensional translation Conclusion

Translation of terms

The translation is a bit more verbose. (Lots of coq_type needed)

Fixpoint map (T1 T2 T3: ml_type) (f: coq_type T1 -> coq_type T2)
(l: vec (coq_type T1) T3) : vec (coq_type T2) T3 :=

match l in vec _ n return vec (coq_type T2) n with
| Nil _ => Nil _
| Cons _ m a l => Cons _ m (f a) (map T1 T2 _ f l)
end.

Definition head (T1 T2 : ml_type) (l : vec (coq_type T1) (ml_succ T2))
: coq_type T1 :=
match l with
| Nil _ _ H => match H with end
| Cons _ _ _ _ a _ => a
end.

However we are now able to disprove unreachable branches.

12 / 16



Introduction Naive translation Intensional translation Conclusion

Injectivity of type constructors

This translation also supports injectivity, contrary to the naive one.

type (_, _) eq = Refl : ('a,'a) eq
let succ_inj : type n1 n2. (n1 succ, n2 succ) eq -> (n1, n2) eq

= function Refl -> Refl

One just needs to apply add hoc projections.

Inductive eqw (T1 T2 : ml_type) := Refl of T1 = T2.
Definition eqw_eq [x y] (w : eqw x y) : x = y :=
match w with Refl _ _ H => H end.

Definition proj_ml_succ defT T :=
if T is ml_succ T1 then T1 else defT.

Definition succ_inj n1 n2 (w : eqw (ml_succ n1) (ml_succ n2)) : eqw n1 n2 :=
Refl _ _ (f_equal (proj_ml_succ n1) (eqw_eq w)).

13 / 16



Introduction Naive translation Intensional translation Conclusion

Mixed use of existential type variables

While type parameters can be both intensional and extensional, existential type
variables create problems with recursion.

type _ hlist = (* Heterogeneous list *)
| HNil : zero hlist
| HCons : 'a * 'b hlist -> ('a * 'b) hlist

Inductive hlist (coq type : ml type -> Type) T :=
| HNil of T = ml_zero
| HCons T1 T2 of
T = ml_pair T1 T2 & coq type T1 & hlist ct T2.

#[bypass_check(guard)]
Fixpoint coq_type (T : ml type) : Type := ...
| ml_hlist T1 => hlist coq type T1
...

Since hlist depends now on coq_type, we need to bypass the termination check.

14 / 16



Introduction Naive translation Intensional translation Conclusion

Related work

Guillaume Claret. Coq of OCaml. OCaml Workshop, 2014.

Antal Spector-Zabusky et al. Total Haskell is reasonable Coq. CPP, 2018.

Danil Annenkov et al. ConCert: a smart contract certification framework in Coq. CPP, 2020.

Laila El-Beheiry et al. SMLtoCoq: Automated Generation of Coq Specifications and Proof
Obligations from SML Programs with Contracts. LFMTP, 2021.

Matthieu Sozeau et al. Coq Coq correct! verification of type checking and erasure for Coq, in
Coq, POPL, 2020.

Pierrick Couderc. Vérification des résultats de l’inférence de types du langage OCaml. PhD
Thesis, Université Paris-Saclay, 2018.

15 / 16



Introduction Naive translation Intensional translation Conclusion

Towards a type-sound transpiler from OCaml to Coq
Automating the translation of GADTs still requires

• Obtaining a trace of how the compiler generated equations

• And also where and how it uses them

• Neither is currently available in OCaml

Coqgen already supports many features, including side-effects.

• As a result, the translation of ml_arrow is

| ml_arrow T1 T2 => coq_type T1 -> M (coq_type T2)

for some monad M, requiring some bootstrapping too.

Many other open problems

• How to represent abstract types, as they may be not injective?

For more information see

http://www.math.nagoya-u.ac.jp/∼garrigue/cocti/

16 / 16

http://www.math.nagoya-u.ac.jp/~garrigue/cocti/

	Introduction
	Naive translation
	Intensional translation
	Conclusion

