1次独立と1次従属

Jacques Garrigue, 2016年10月14日

1次結合 $\vec{v} \in V$ が $\vec{u}_1, ..., \vec{u}_n \in V$ の 1次結合で書けるとは,以下の等式をみたす $c_1, ..., c_n \in \mathbf{R}$ が存在することをいう.

$$\vec{v} = c_1 \vec{u}_1 + \ldots + c_n \vec{u}_n$$

1次関係 \vec{o} が $\vec{u}_1, \ldots, \vec{u}_n \in V$ の 1 次結合で書けるとき,その結合を $\vec{u}_1, \ldots, \vec{u}_n$ の 1 次関係ともいう.

$$c_1\vec{u}_1 + \ldots + c_n\vec{u}_n = \vec{o}$$

1次独立・1次従属 \vec{o} が $\vec{u}_1, \dots, \vec{u}_n \in V$ が自明でない1次関係を持たないとき,すなわち $c_1\vec{u}_1 + \dots + c_n\vec{u}_n = \vec{o}$ が $c_i = 0$ $(1 \le i \le n)$ と同値であるとき, $\vec{u}_1, \dots, \vec{u}_n$ は1次独立であるという.自明でない1次関係が存在するときは1次従属であるという.

例 $V = \mathbb{R}^n$ において、 $\vec{e_i}$ を i 番目の成分が1 でそれ以外が0 の基本ベクトルとする。そのときには $\vec{e_1}, \ldots, \vec{e_n}$ は1 次独立である。

例 $V = \mathbf{R}[x]_n$ において $1, x, x^2, \dots, x^n$ という n+1 個のベクトルが 1 次独立である.

例題 \mathbb{R}^4 において、次のベクトルが1次独立か1次従属かを調べよ.

$$\vec{a}_1 = \begin{bmatrix} 2\\1\\-3\\1 \end{bmatrix} \qquad \vec{a}_2 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \qquad \vec{a}_3 = \begin{bmatrix} 3\\1\\2\\2 \end{bmatrix}$$

定理 **4.2.1** $\vec{u}_1, \dots, \vec{u}_n \in V$ が 1次従属であることと,ある \vec{u}_i がそれ以外の \vec{u}_j $(j \neq i)$ の 1次結合で書けることは同値である.

定理 **4.2.2** $\vec{u}_1, \dots, \vec{u}_n \in V$ が 1次独立で, $\vec{u}, \vec{u}_1, \dots, \vec{u}_n$ が 1次従属ならば, \vec{u} が $\vec{u}_1, \dots, \vec{u}_n$ の 1次結合として書ける.

1 次結合の行列記法 $A=[a_{ij}]$ が $m\times n$ 行列で, $(\vec{u}_1,\ldots,\vec{u}_m)$ がベクトルの m 組のとき,以下の記法を定義する

$$(\vec{u}_1, \dots, \vec{u}_m)A = (a_{11}\vec{u}_1 + \dots + a_{m1}\vec{u}_m, \dots, a_{1n}\vec{u}_1 + \dots + a_{mn}\vec{u}_m)$$

注: $(\vec{u}_1,\ldots,\vec{u}_m)$ と $\begin{bmatrix} \vec{u}_1 & \ldots & \vec{u}_m \end{bmatrix}$ を同一視すると計算が一致する.

定理 **4.2.3** Vのベクトルの 2つの組 $\vec{v_1}, \ldots, \vec{v_n}$ と $\vec{u_1}, \ldots, \vec{u_m}$ について,

- (1) $\vec{v}_1, \ldots, \vec{v}_n$ がそれぞれ $\vec{u}_1, \ldots, \vec{u}_m$ の 1 次結合として書ける
- (2) n > m

ならば、 $\vec{v}_1, \ldots, \vec{v}_n$ は1次従属である.

定理 4.2.5 $\vec{u}_1, \dots, \vec{u}_m \in V$ が 1 次独立で、 $A \otimes B$ が $m \times n$ 行列のとき、

$$(\vec{u}_1,\ldots,\vec{u}_m)A=(\vec{u}_1,\ldots,\vec{u}_m)B$$

 $x \in A = B$ $x \in A$.

例題

$$\vec{v}_1 = \vec{u}_1 - \vec{u}_2 + 3\vec{u}_3, \qquad \vec{v}_2 = 2\vec{u}_1 - \vec{u}_2 + 6\vec{u}_3 + \vec{u}_4,$$

$$\vec{v}_3 = 2\vec{u}_1 - 2\vec{u}_2 + \vec{u}_3 - \vec{u}_4, \qquad \vec{v}_1 = \vec{u}_1 - \vec{u}_3 + 3\vec{u}_4$$

- (1) 上記の1次結合を行列をもって表現せよ
- (2) $\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4$ が 1 次独立のとき、 $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ が 1 次独立か 1 次従属か調べよ.