Typed Lambda Calculus

Jacques Garrigue, 2012.07.02

Contrary to mathematical functions, λ-calculus does not define a function's domain and range. For instance, c_{+}has no meaning if its arguments are not Church numerals, but there is no way to make this explicit.

1 Types and terms

Typed λ-calculi use types in place of sets. In the simply typed λ-calculus, each value belongs to a single type. There are two kinds of types: base types, and functional/structural types.

$$
\begin{aligned}
b & ::=\text { nat } \mid \text { bool } \mid \ldots \\
t: & :=b|t \rightarrow t| t \times t
\end{aligned}
$$

Type information also appears inside λ-terms.

$$
M::=x\left|c_{t}\right| \lambda x: t . M|(M M)|(M, M)
$$

In order to manipulate values other than functions, δ-rules are introduced in addition to β-reduction.

$$
\begin{array}{ll}
(\lambda x: \tau . M) N & \rightarrow[N / x] M \\
\left(\mathrm{fst}_{\tau \times \theta \rightarrow \tau}(M, N)\right) & \rightarrow M \\
\left(\operatorname{snd}_{\tau \times \theta \rightarrow \theta}(M, N)\right) & \rightarrow N \\
\left(\mathrm{~s}_{\text {nat } \rightarrow \text { nat }} n_{\text {nat }}\right) & \rightarrow(n+1)_{\text {nat }} \\
(\text { if0 } & \rightarrow M \\
(\text { if0 } & \\
\left(0_{\text {nat } \rightarrow \tau \rightarrow \tau \rightarrow \tau} 0_{\text {nat }} M N\right) & \rightarrow M
\end{array}
$$

In the above rules, s has a unique type, but fst, snd and if0 can be used with several types. τ and θ represent types that the user can choose as needed.

2 Typing derivation

The following judgment states that M is well-typed.

$$
\Gamma \vdash M: \tau
$$

M and τ are respectively a λ-term and its type. Γ is a typing evironment, associating variables to their types; it has the form: $\left\{x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n}\right\}$.

A typing judgment is correct when it can be derived from the following typing rules.
Variable $\quad \Gamma \vdash x: \tau \quad(x: \tau \in \Gamma)$
Constant $\quad \Gamma \vdash c_{\tau}: \tau$
Abstraction
$\frac{\Gamma, x: \theta \vdash M: \tau}{\Gamma \vdash \lambda x: \theta \cdot M: \tau}$
Application $\frac{\Gamma \vdash M: \theta \rightarrow \tau \quad \Gamma \vdash N: \theta}{\Gamma \vdash(M N): \tau}$
Product

$$
\frac{\Gamma \vdash M: \tau \quad \Gamma \vdash N: \theta}{\Gamma \vdash(M, N): \tau \times \theta}
$$

Example 1 (derivation)

$$
\frac{\frac{x: \text { nat } \vdash \mathrm{s}_{\text {nat } \rightarrow \text { nat }}: \text { nat } \rightarrow \text { nat } x: \text { nat } \vdash x: \text { nat }}{}}{\frac{x: \text { nat } \vdash\left(\mathrm{s}_{\text {nat } \rightarrow \text { nat }} x\right): \text { nat }}{\vdash \lambda x: \text { nat. }\left(\mathrm{s}_{\text {nat } \rightarrow \text { nat }} x\right): \text { nat } \rightarrow \text { nat }}} \stackrel{\vdash\left(\left(\lambda x: \text { nat. }\left(\mathrm{s}_{\text {nat } \rightarrow \text { nat }} x\right)\right) 1_{\text {nat }}\right): \text { nat }}{ } \quad \vdash 1_{\text {nat }}: \text { nat }
$$

Properties

The following properties are stated for the simply typed λ calculus with only δ-rules for fst and snd.

Theorem 1 (subject reduction) Whenever $\Gamma \vdash M: \tau$ and $M \rightarrow N$ are valid, $\Gamma \vdash N: \tau$ is valid.

Theorem 2 (termination) If $\Gamma \vdash M: \tau$, then there is no infinite reduction sequence $(M \rightarrow$ $M_{1} \rightarrow M_{2} \rightarrow \ldots$).

Having termination means that some otherwise computable functions cannot be defined. For instance, the term $(\lambda x . x x)(\lambda x . x x)$ was definable in untyped λ-calculus, but it cannot be typed. Let's try to build a derivation:

$$
\frac{x: \tau \vdash x: \tau \rightarrow \theta \quad x: \tau \vdash x: \tau}{\frac{x: \tau \vdash x x: \theta}{\vdash \lambda x: \tau \cdot x x: \theta}}
$$

From the structure of the term, this is the only possible shape for a derivation, but it requires that $\tau=(\tau \rightarrow \theta)$. According to our definition of types, this equation has no solution (it would require infinite types).

Similarly, if we introduce a term Y, we can define non-terminating computations, so by contradiction there is no typable version of Y in the simply typed λ-calculus.

3 Relation to Logic

If we only look at types in derivations, we obtain valid derivations for intuitionistic logic, which motivated the λ-calculus. In such a system, constants behave as axioms.

For instance, starting from the derivation for $\lambda x: \tau \times \theta$.(snd x, fst $x)$:

$$
\frac{\frac{\Gamma \vdash \text { snd }: \tau \times \theta \rightarrow \theta \quad \Gamma \vdash x: \tau \times \theta}{\Gamma \vdash(\text { snd } x): \theta} \frac{\vdash \mathrm{fst}: \tau \times \theta \rightarrow \tau \quad \Gamma \vdash x: \tau \times \theta}{\Gamma \vdash(\text { fst } x): \tau}}{\frac{\Gamma=x: \tau \times \theta \vdash(\text { snd } x, \text { fst } x): \theta \times \tau}{\vdash \lambda x: \tau \times \theta \cdot(\text { snd } x, \text { fst } x): \tau \times \theta \rightarrow \theta \times \tau}}
$$

we obtain the following proof in intuitionistic logic:

$$
\frac{\frac{A \wedge B \rightarrow B \quad A \wedge B^{(1)}}{B} \quad \frac{A \wedge B \rightarrow A \quad A \wedge B^{(1)}}{A}}{\frac{B \wedge A}{A \wedge B \rightarrow B \wedge A}}{ }^{(1)}
$$

Since we can mechanically find a unique derivation for any well-typed λ-term, we can view it as a proof.

The following relation is called the Curry-Howard isomorphism.

λ-calculus	Logic
Type	Proposition
λ-Term	Proof
\rightarrow	\Rightarrow
\times	\wedge
+	\vee

4 Universality

As we have seen above, if we limit ourselves to the above definition the typed λ-calculus is not universal. This is due to two different reasons.

The addition of numbers through δ-rules is necessary because we cannot encode Church numerals. More precisely, we can type them, but not in a sufficiently general way.

$$
\vdash \lambda f: \tau \rightarrow \tau . \lambda x: \tau . f^{n} x:(\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau
$$

The trouble is that in order to define the above term, we need to choose a specific τ. Since Church numerals need to be used with different kinds of f and x, this encoding proves insufficient. This can be solved by the addition of the above δ-rules.

For fixpoints, the problem is different: we cannot define them for any type. But the solution is similar: we can add a δ-rule.

$$
\mathrm{Y}_{(\tau \rightarrow \tau) \rightarrow \tau} M \rightarrow M\left(\mathrm{Y}_{(\tau \rightarrow \tau) \rightarrow \tau} M\right)
$$

If we add natural numbers and Y, λ-calculus becomes universal. Evaluation can be defined either using directly δ-rules, or through a translation to untyped λ-calculus.

With a stronger type system it becomes possible to encode Church numerals directly. Second-order λ-calculus introduces type variables.

$$
\begin{aligned}
t & ::=\ldots|\tau| \forall \tau . t \\
M & ::=\ldots|\Lambda \tau . M| M[t]
\end{aligned}
$$

Using them we can encode Church numerals as follows.

$$
\begin{aligned}
& \vdash \mathrm{c}_{n}=\Lambda \tau . \lambda f: \tau \rightarrow \tau \cdot \lambda x: \tau . f^{n} x: \forall \tau \cdot(\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau \\
& \vdash \mathrm{c}_{+}=\lambda m: N a t . \lambda n: N a t . \Lambda \tau \cdot \lambda f: \tau \rightarrow \tau \cdot \lambda x: \tau \cdot(m[\tau] x(n[\tau] f x)): \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
& \vdash \mathrm{c}_{x}=\lambda m: \text { Nat. } \lambda n: \text { Nat. } \Lambda \tau \cdot \lambda f: \tau \rightarrow \tau \cdot(m[\tau](n[\tau] f)): \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
& \vdash \mathrm{c}_{\text {exp }}=\lambda m: \text { Nat. } \lambda n: \text { Nat. } \Lambda \tau . n[\tau \rightarrow \tau](m[\tau]): N a t \rightarrow \text { Nat } \rightarrow \text { Nat }
\end{aligned}
$$

Here Nat $=\forall \tau .(\tau \rightarrow \tau) \rightarrow \tau \rightarrow \tau$.
However, second-order λ-calculus still guarantees termination, and as a result we cannot encode Y in it. This is not necessarily a weakness: if all computations terminate, then we can give a concrete meaning to all terms.

We could also choose to extend λ-calculus with recursive types. They allow to solve equations such as $\tau=(\tau \rightarrow \theta)$, and are sufficient to give a type to Y. However, we then loose termination.

