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In 1920, Schönfinkel, a German logician, invented combinatory logic, which was to become lambda-
calculus through the works of Curry and Church. As its original name shows, the goal was the
formal manipulation of logical formulas. However, it became later connected to computer science, and
provides a theoretical basis for functional programming languages, starting with Lisp in the 1950s.
Despite its very simple definition it has a strong expressive power, and is often used as model for the
theoretical strudy of programming languages.

1 Term Rewriting

The simplest definition of λ-calculus is as a term rewriting system. In term rewriting, we seen compu-
tation as the rewriting of part of terms through rewriting rules. For instance, here is a formalization
of simple arithmetic.

Terms E ::= R | (E + E) | (E − E) | (E × E) | (E/E)

Rewriting rules When both x and y are numbers,

(x + y) → x + y
(x − y) → x − y
(x × y) → x × y
(x/y) → x/y

Note: (x + y) is a formula, but x + y is the number obtaining by adding x and y.
The above rules are sometimes called reduction rules.

Example 1 (rewriting)

(15 + (1/3)) × (5 − 2) → (15 + 0.3333) × (5 − 2) → (15.3333) × 3 → 46

2 Syntax of lambda-calculus

Definition 1 A λ-term M must be of the three following forms:

M ::= x variable
| λx.M abstraction
| (M M) application

The variable x intuitively represents a value that should be bound in the environment. We will
see how computation substitutes it for another lambda-term.

λx.M binds the variable x if it appears in M . f = λx.M can be seen as a function, whose definition
is f(x) = M . However, the λ notation avoids the need to give a name to this function.

(M1 M2) represents function application. This is similar to the usual notation M1(M2), but M1

need not be a variable, it can be any λ-term.



Lambda-calculus: Syntax 2

Mixing the above grammar with arithmetic,

f(2) when f(x) = x + 1

can be written directly as
((λx.x + 1) 2)

Free variables and substitution In λx.M , all occurences of x in M are said to be bound. If a
variable x appears in a term M without being bound, it is sai to be free. The set of free variables of
M is defined inductively as follows.

FV (x) = {x}
FV (λx.M) = FV (M) \ {x}
FV (M N) = FV (M) ∪ FV (N)

Substitution replaces such free variables with other λ-terms. ([N/x]M) replaces all free occurences
of x in M with N .

([N/x]x) = N
([N/x]y) = y x 6= y
([N/x]λx.M) = λx.M
([N/x]λy.M) = λy.([N/x]M) x 6= y, y 6∈ FV (N)
([N/x](M M ′)) = (([N/x]M) ([N/x]M ′))

In the 4th clause, y should not be a free variable of N This is possible through the use of α-conversion.
When z is not free in M ,

(α) λy.M ↔ λz.([z/y]M)

Such renaming of bound variables is always allowed.

3 Reduction rules

Definition 2 λ-calculus is the term rewriting system based on λ-terms, with α-conversion and β-
reduction as reduction rules.

(β) ((λx.M) N) → ([N/x]M)

Example 2 (β-reduction)

(λf.λg.λx.f x (g x)) (λx.λy.x) (λx.λy.x)
→ λx.((λx.λy.x) x ((λx.λy.x) x))
→ λx.((λy.x) (λy.x))
→ λx.x

(λx.(x x)) (λx.(x x))
→ (λx.(x x)) (λx.(x x))
→ . . .

Theorem 1 (Church-Rosser) λ-calculus is confluent. I.e. When there are 2 reduction sequences
M → . . . → N and M → . . . → P , then there exists are term T such that N → . . . → T and
P → . . . → T .

4 Lambda-calculus is universal

Any program can be written using λ-calculus.
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Natural numbers They can be encoded using Church numerals

cn = λf.λx.(f . . . (f x) . . .) f applied n times
c+ = λm.λn.λf.λx.(m f (n f x)) addition
c× = λm.λn.λf.(m (n f)) multiplication

Exercise 1 Find the λ-term corresponding to exponentiation.

Boole algebra They can be encoded as follows.

t = λx.λy.x f = λx.λy.y not = λb.λx.λy.(b y x)

Here is a function that receives a Church numeral as input and returns whether it is equal to 0 or
not.

if0 = λn.(n (λx.f) t)

Cartesian product The cartesion product of two sets can be expressed by encoding pairs, using
the following terms:

pair = λx.λy.λf.(f x y) fst = λp.(p t) snd = λp.(p f)

Here is how it works:
fst (pair a b) → pair a b t → (t a b) → a

Substraction While multiplication was easy, subtraction of Church numbers is comparatively dif-
ficult. Here is a possible definition.

c− = λm.λn.(n p m)
s = λn.λf.λx.(f (n f x))
s’ = λx.(pair (snd x) (s (snd x)))
p = λn.(fst (n s’ (pair c0 c0)))

s computes the successor of a number, andp its predecessor.
s’(pair m n) returns the pair (sn,m). By applying it k times we can obtain the k − 1th successor

of m.
This property is used by p to return the predecessor of n.
Finally, c− computes the nth predecessor of m by repeatedly applying p. If m ≥ n, then

c− cm cn
∗→ cm−n

Fix-point operator In order to define recursive functions, we need the fix-point operator Y . Y is
a fix-point operator when (Y M) reduces to (M (Y M)).

Y = (λf.λx.(x (f f x))) (λf.λx.(x (f f x)))

Y is necessary when we don’t know hom many times we will need to iterate a function. For
instance, here is the recursive definition of factorial.

0! = 1
n! = n × (n − 1)! if n > 0

In the syntax of λ-calculus it becomes:

c! = λn.if0 n c1 (c× n (c! (p n)))
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Such recursive definitions (c! appears in the right-hand side too) are not valid in the λ-calculus itself,
but they can be encoded with Y .

c! = Y (λf.λn.if0 n c1 (c× n (f (p n)))

Since Y M → M(Y M), the above equation is valid.

c! → (λf.λn.if0 n c1 (c× n (f (p n)))) c! → λn.if0 n c1 (c× n (c! (p n)))

5 Evaluation strategies

The lambda calculus by itself is not a computer. Evaluation order is not specified, and on some λ-
terms evaluation may terminate or not depending on the choice of reductions. The concepts of normal
form and strategy let us define computations more precisely.

Normal form The most logical definition for normal form is to require that no redex (reducible
subterm) be left in a term. But if we want to get closer to the notion of computation, weak normal
form, where redexes under a λ-abstraction need not be reduced, is more natural. Lazy languages, like
Haskell, do not reduce terms in argument position either, so they produce weak head normal form.

λ-term nf wnf whnf
x (λy, y), λx.λy.x ◦ ◦ ◦
λx.(λy.y)x × ◦ ◦
x ((λy.y) z) × × ◦

Leftmost strategy Reduce leftmost redex first. This amounts to call-by-name, i.e. functions are
called without evaluating their arguments.

(λx.x) ((λy.y) z) → ((λy.y) z)

If for some strategy M →∗ N (i.e. N has a normal form), the lefmost strategy reaches this normal
form.

Rightmost-innermost strategy Reduce the innermost among the rightmost redexes. This amounts
to call-by-value, i.e. function arguments are evaluated before being substitued in the function body.

(λx.x) ((λy.y) z) → ((λx.x) z)

If for some strategy M →∗ . . . (i.e. there is an infinite reduction starting for M), then the rightmost-
innermost strategy does not terminate.

Abstract machine By combining a definition of normal form with an appropriate strategy, one
defines an abstract machine evaluation λ-terms deterministically.


