Surveys in Mathematical Sciences I（Summer 2012） Report for Part 3

Errata：Updated parts in problem B are in red．

Report delivery and deadline

You should deliver your report to the support office（支援室）by Monday 2012／8／6．
You can write your report either in English or Japanese，but English is prefered．

Task

You should solve both problems A and B．

Problem A

A λ－term is in normal form if the β－rule cannot be applied anywhere inside it．
1．Compute the normal form of $\left(c_{2}\left(c_{2} f\right)(f x)\right)$ ．
2．Compute the normal form of $\left(\mathrm{c}_{3}(\lambda p . \lambda f . p(\lambda x . \lambda y . f y x))(\lambda f . f a b)\right)$
3．Write a λ－term $\mathrm{c}_{\mathrm{log}}$ computing the base 2 logarithm of its argument m ，or more precisely the smallest positive integer n such that $2^{n} \geq m$ ．

Hint：you shall only need to use c_{+}, c_{\times}, c_{-}and if0 to do that．
Erratum：the definition of s^{\prime} in the lecture notes is wrong．The right definition is：

$$
\mathbf{s}^{\prime}=\lambda x \cdot(\text { pair }(\operatorname{snd} x)(\mathrm{s}(\operatorname{snd} x)))
$$

Problem B

Write the typing derivation for the following term，using the typing rules of the simply typed λ－calculus．

$$
\mathrm{Y}_{(\sigma \rightarrow \sigma) \rightarrow \sigma}\left(\lambda f: \sigma . \lambda m: \text { int. } \lambda n: \text { int.if0 }{ }_{\mathrm{int} \rightarrow \sigma} m n\left(f\left(\bmod _{\sigma} n m\right) m\right)\right)
$$

where $\sigma=$ int $\rightarrow($ int \rightarrow int $)$ and $\bmod _{\sigma} n m$ is the remainder of the division of n by m ．
What does this function compute？

