Surveys in Mathematical Sciences I (Summer 2012) Report for Part 3

Errata: Updated parts in problem B are in red.

Report delivery and deadline

You should deliver your report to the support office (\overline{z} 援室) by Monday 2012/8/6.

You can write your report either in English or Japanese, but English is prefered.

Task

You should solve **both** problems A and B.

Problem A

A λ -term is in normal form if the β -rule cannot be applied anywhere inside it.

- 1. Compute the normal form of $(c_2 (c_2 f) (f x))$.
- 2. Compute the normal form of $(c_3 (\lambda p.\lambda f.p (\lambda x.\lambda y.f y x)) (\lambda f.f a b))$
- 3. Write a λ -term \mathbf{c}_{\log} computing the base 2 logarithm of its argument m, or more precisely the smallest positive integer n such that $2^n \ge m$.

Hint: you shall only need to use $c_+,\,c_\times,\,c_-$ and if0 to do that.

Erratum: the definition of s' in the lecture notes is wrong. The right definition is:

$$s' = \lambda x.(pair (snd x) (s (snd x)))$$

Problem B

Write the typing derivation for the following term, using the typing rules of the simply typed λ -calculus.

 $\mathsf{Y}_{(\sigma \to \sigma) \to \sigma} (\lambda f: \sigma. \lambda m: \text{int.} \lambda n: \text{int.} \mathsf{if0}_{\text{int} \to \sigma} \ m \ n \ (f \ (\mathsf{mod}_{\sigma} \ n \ m) \ m))$

where $\sigma = \text{int} \rightarrow (\text{int} \rightarrow \text{int})$ and $\text{mod}_{\sigma} n m$ is the remainder of the division of n by m.

What does this function compute?