
Typed Lambda Calculus

Jacques Garrigue, 2009.05.21

Contrary to mathematical functions, λ-calculus does not define a function’s domain and range. For
instance, c+ has no meaning if its arguments are not Church numerals, but there is no way to make
this explicit.

1 Types and terms

Typed λ-calculi use types in place of sets. In the simply typed λ-calculus, each value belongs to a
single type. There are two kinds of types: base types, and functional/structural types.

b ::= int | bool | . . .
t ::= b | t → t | t × t

Type information also appears inside λ-terms.

M ::= x | ct | λx:t.M | (M M) | (M,M)

In order to manipulate values other than functions, δ-rules are introduced in addition to β-
reduction.

(λx:τ.M) N → [N/x]M
(fstτ×θ→τ (M,N)) → M
(sndτ×θ→θ (M,N)) → N
(sint→int nint) → (n + 1)int

(if0int→τ→τ→τ 0int M N) → M
(if0int→τ→τ→τ nint M N) → N
. . .

In the above rules, s has a unique type, but fst, snd and if0 can be used with several types. τ and
θ represent types that the user can choose as needed.

2 Typing derivation

The following judgment states that M is well-typed.

Γ ` M : τ

M and τ are respectively a λ-term and its type. Γ is a typing evironment, associating variables to
their types; it has the form: {x1 : τ1, . . . , xn : τn}.

A typing judgment is correct when it can be derived from the following typing rules.

Variable Γ ` x : τ (x : τ ∈ Γ)

Constant Γ ` cτ : τ

Abstraction
Γ, x : θ ` M : τ

Γ ` λx:θ.M : τ

1

Typed lambda-calculus 2

Application
Γ ` M : θ → τ Γ ` N : θ

Γ ` (M N) : τ

Product
Γ ` M : τ Γ ` N : θ

Γ ` (M,N) : τ × θ

Example 1 (derivation)

x : int ` sint→int : int → int x : int ` x : int

x : int ` (sint→int x) : int

` λx:int.(sint→int x) : int → int ` 1int : int

` ((λx:int.(sint→int x)) 1int) : int

Properties

The following properties are stated for the simply typed λ calculus with only δ-rules for fst and snd.

Theorem 1 (subject reduction) Whenever Γ ` M : τ and M → N are valid, Γ ` N : τ is valid.

Theorem 2 (termination) If Γ ` M : τ , then there is no infinite reduction sequence (M → M1 →
M2 → . . .).

Having termination means that some otherwise computable functions cannot be defined. For
instance, the term (λx.x x)(λx.x x) was definable in untyped λ-calculus, but it cannot be typed. Let’s
try to build a derivation:

x : τ ` x : τ → θ x : τ ` x : τ
x : τ ` x x : θ

` λx : τ.x x : θ
From the structure of the term, this is the only possible shape for a derivation, but it requires that
τ = (τ → θ). According to our definition of types, this equation has no solution (it would require
infinite types).

Similarly, if we introduce a term Y , we can define non-terminating computations, so by contradic-
tion there is no typable version of Y in the simply typed λ-calculus.

3 Relation to Logic

If we only look at types in derivations, we obtain valid derivations for intuitionistic logic, which
motivated the λ-calculus. In such a system, constants behave as axioms.

For instance, starting from the derivation for λx : τ × θ.(snd x, fst x):

Γ ` snd : τ × θ → θ Γ ` x : τ × θ

Γ ` (snd x) : θ

` fst : τ × θ → τ Γ ` x : τ × θ

Γ ` (fst x) : τ

Γ = x : τ × θ ` (snd x, fst x) : θ × τ

` λx : τ × θ.(snd x, fst x) : τ × θ → θ × τ

we obtain the following proof in intuitionistic logic:

A ∧ B → B A ∧ B(1)

B

A ∧ B → A A ∧ B(1)

A
B ∧ A

A ∧ B → B ∧ A
(1)

Since we can mechanically find a unique derivation for any well-typed λ-term, we can view it as a
proof.

The following relation is called the Curry-Howard isomorphism.

Typed lambda-calculus 3

λ-calculus Logic
Type Proposition

λ-Term Proof
→ ⇒
× ∧
+ ∨

4 Universality

As we have seen above, if we limit ourselves to the above definition the typed λ-calculus is not universal.
This is due to two different reasons.

The addition of numbers through δ-rules is necessary because we cannot encode Church numerals.
More precisely, we can type them, but not in a sufficiently general way.

` λf : τ → τ.λx : τ.fn x : (τ → τ) → τ → τ

The trouble is that in order to define the above term, we need to choose a specific τ . Since Church
numerals need to be used with different kinds of f and x, this encoding proves insufficient. This can
be solved by the addition of the above δ-rules.

For fixpoints, the problem is different: we cannot define them for any type. But the solution is
similar: we can add a δ-rule.

Y(τ→τ)→τ M → M (Y(τ→τ)→τ M)

If we add natural numbers and Y, λ-calculus becomes universal. Evaluation can be defined either
using directly δ-rules, or through a translation to untyped λ-calculus.

With a stronger type system it becomes possible to encode Church numerals directly. Second-order
λ-calculus introduces type variables.

t ::= . . . | τ | ∀τ.t
M ::= . . . | Λτ.M | M [t]

Using them we can encode Church numerals as follows.

` cn = Λτ.λf : τ → τ.λx : τ.fnx : ∀τ.(τ → τ) → τ → τ
` c+ = λm : Int .λn : Int .Λτ.λf : τ → τ.λx : τ.(m[τ] x (n[τ] f x)) : Int → Int → Int
` c× = λm : Int .λn : Int .Λτ.λf : τ → τ.(m[τ] (n[τ] f)) : Int → Int → Int
` cexp = λm : Int .λn : Int .Λτ.n[τ → τ] (m[τ]) : Int → Int → Int

Here Int = ∀τ.(τ → τ) → τ → τ .
However, second-order λ-calculus still guarantees termination, and as a result we cannot encode

Y in it. This is not necessarily a weakness: if all computation terminate, then we can give a concrete
meaning to all terms.

We could also choose to extend λ-calculus with recursive types. They allow to solve equations
such as τ = (τ → θ), and are sufficient to give a type to Y . However, we then loose termination.

