Surveys in Mathematical Sciences I (Summer 2009) Report for Part 2

Report delivery and deadline

You should deliver your report to the support office $(\overline{\mathbf{5}} \mathbf{\underline{5}} \mathbf{\underline{5}})$ by Tuesday 2009/7/14.

You can write your report either in English or Japanese, but English is prefered.

Task

You should solve **both** problems A and B.

Problem A

A λ -term is in normal form if the β -rule cannot be applied anywhere inside it.

- 1. Compute the normal form of $(c_1 f x)$.
- 2. Compute the normal form of $(c_2 c_+ c_1 c_1 c_1)$.
- 3. Write a λ -term $c_{\sqrt{-}}$ computing the square root of its argument m, or more precisely the smallest positive integer n such that $n \times n \ge m$.

Hint: you shall only need to use c_+ , c_- and if 0 to do that.

Problem B

Write the typing derivation for the following term, using the typing rules of the simply typed λ -calculus.

 $\mathsf{Y}_{(\sigma \to \sigma)} \ (\lambda f: \sigma.\lambda m: \mathrm{int.}\lambda n: \mathrm{int.}\mathsf{if0}_{\mathrm{int} \to \sigma} \ m \ n \ (\mathsf{mod}_{\sigma} \ n \ m))$

where $\sigma = \text{int} \rightarrow (\text{int} \rightarrow \text{int})$ and mod_{σ} is the quotient remainder.

What does this function compute?