
Second-order and dependent type systems

Jacques Garrigue, 2009/6/11

Simple types are not enough to enjoy the ful relation withl expressiveness of λ-calculus.
From the point of view of logic, they restrict us to propositional logic.

By extending the type system, we can recover more expressiveness, and find relations
with stronger logics.

1 Second order λ-calculus: λ2

If we look at encodings using in untyped λ-terms, a common pattern appears.

t = λx.λy.x
f = λx.λy.y
pair a b = λs.(sab)
fst = λp.p t
snd = λp.p f

In all these examples, it is esssential that the type of the parameters is not fixed. This
works in an untyped context, but not with simple types. The fact that the same function
(λ-term) can be applied to values of different types is called polymorphism.

In the second orde λ-calculus, we add polymorphic types.

t ::= α type variable
| ∀α.t polymorphic type
| t → t function type

M ::= x | λx:t.M | (MM)
| Λτ.M type abstraction
| M [t] type application

The following typing rules are needed.

Tabs
Γ, α : ∗ ` M : τ

Γ ` Λα.M : ∀α.τ

Tapp
Γ ` M : ∀α.τ

Γ ` M [t] : [t/α]τ

The terms above can be typed in the following way.

Bool = ∀α.α → α → α
` t = Λα.λx:α.λy:α.x : Bool
` f = Λα.λx:α.λy:α.y : Bool

1

2nd-order and dependent types 2

Pair[t1, t2] = ∀γ.(t1 → t2 → γ) → γ
` pair = Λα.Λβ.λa:α.λb:α.Λγ.λs:α → β → γ.(s a b) : ∀α.∀β.α → β → Pair[α, β]
` fst = Λα.Λβ.λp:Pair[α, β].p[α] (λx:α.λy:β.x) : ∀α.∀β.Pair[α, β] → α
` snd = Λα.Λβ.λp:Pair[α, β].p[β] (λx:α.λy:β.y) : ∀α.∀β.Pair[α, β] → β

Church numerals can be typed too.

Nat = ∀α.(α → α) → α → α
` cn = Λα.λf : α → α.λx : α.fnx : Nat
` c+ = λm : Nat.λn : Nat.Λα.λf : α → α.λx : α.(m[α] x (n[α] f x)) : Nat → Nat → Nat
` c× = λm : Nat.λn : Nat.Λα.λf : α → α.(m[α] (n[α] f)) : Nat → Nat → Nat
` cexp = λm : Nat.λn : Nat.Λα.n[α → α] (m[α]) : Nat → Nat → Nat

Through this small extension, expressiveness is considerably increased. However, ter-
mination can still be proved for second-order λ-calculus, meaning that Y cannot be encode.
Conversely, if we add only Y as a δ-rule, second-order λ-calculus becomes universal.

2 Predicate logic and λP

The second-order λ-calculus is more expressive for computations, but from the point of
view of logic it is still limited to predicate logic.

In order to encode predicate logic, we need a different kind of extension.
Here are the terms and propositions of predicate logic.

t ::= x | a | f(t, . . .) terms
A ::= ⊥ | A → A | A ∧ A | A ∨ A propositions

| p(t, . . .) predicate
| ∀x.A universal quantifier
| ∃x.A existential quantifier

Propositions look like polymorphic types, however they are quantified on terms rather
than types.

The dependently-typed λ-calculus, or λP, extends simple types with quantification
over terms.

t ::= b | t × t types
| ⊥ contradiction
| pt M predicate
| Πx:t.t dependent function

M ::= x | ct | λx:t.M | (MM) | (M,M) terms

When x does not occur in t2, the dependent function type Πx:t1.t2 can be written t1 → t2.
The typing rules are extended and modified. In particular we need to check the well-

formedness of types.

Type
Γ ` M : t

Γ ` pt M ok

Γ, x : t ` t′ ok

Γ ` Πx:t.t′ ok

Γ, x : t ` t′ ok

Γ ` Σx:t.t′ ok

2nd-order and dependent types 3

Abs
Γ, x : t ` M : t′

Γ ` λx:t.M : Πx:t.t′

App
Γ ` M : Πx:t.t′ Γ ` N : t

Γ ` (M N) : [N/x]t′

Tsubs
Γ ` M : [N/x]t N =βδ N ′

Γ ` M : [N ′/x]t

Neg
Γ ` M : ⊥ Γ ` t ok

Γ ` M : t

The above definitions are sufficient to encode predicate logic. Actually, this calculus
is more expressive than predicate logic, but there is an injective morphism from predicate
logic to λP.

For instance, here is the type encoding the proposition “Humans are mortal, Socrates
is a human, so Socrates is mortal”.

(Πx :Name.Human x → Mortal x) → Human Socrates → Mortal Socrates

A proof of this proposition is encoded by the following term.

λmortal :(Πx :Name.Human x → Mortal x).λhuman:(Human Socrates).mortal Socrates human

3 λP and theorem proving

Not only can we encode propositions and proofs in λP, but the tools of λ-calculus, such
as δ rules, are useful in making proofs simpler.

The proposition “∀x.x + x = 2 × x” can be encoded as follows.

Πx:Nat.eqnat(add x x ,mult 2 x)

Assuming the following δ-rules,

add 0 n → n
add (sm) n → s (add m n)
mult 0 n → 0
mult (sm) n → add n (mult m n)

and these exta axioms,

add sym : Πm:Nat.Πn:Nat.eqnat(add m n, add n m)
eq sub : Πf :(Nat → Nat).Πm:Nat.Πn:Nat.eqnat(m,n) → eqnat(f m, f n)

here is its proof term.

λx:Nat.eq sub (λy:Nat.add x y) (add sym 0 x)

λP can encode predicate logic, but it lacks in polymorphism. By combining λP and λ2,
we gain in expressiveness, and this type system provides a foundation for type-theoretic
theorem provers.

