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Abstract. This paper is a review of the paper [F4] where a geo-
metric interpretation of the generalized (including the regulariza-
tion relation) double shuffle relation for multiple L-values is given.
In precise, it is shown that Enriquez’ mixed pentagon equation
implies the relations.

0. Introduction

Multiple L-values L(k1, · · · , km; ζ1, · · · , ζm) are the complex numbers
defined by the following series

(1) L(k1, · · · , km; ζ1, · · · , ζm) :=
∑

0<n1<···<nm

ζn1
1 · · · ζnm

m

nk1
1 · · ·nkm

m

for m, k1,. . . , km ∈ N(= Z>0) and ζ1,. . . ,ζm ∈ µN(:the group of N -th
roots of unity in C). They converge if and only if (km, ζm) ̸= (1, 1).
Multiple zeta values are regarded as a special case for N = 1. These
values have been discussed in several papers [AK, BK, G, R] etc. Multi-
ple L-values appear as coefficients of the cyclotomic Drinfel’d associator
ΦN
KZ (5) in UFN+1: the non-commutative formal power series ring with

N + 1 variables A and B(a) (a ∈ Z/NZ).
The mixed pentagon equation (4) is a geometric equation introduced

by Enriquez [E]. The series ΦN
KZ satisfies the equation, which yields

non-trivial relations among multiple L-values. The generalised dou-
ble shuffle relation (the double shuffle relation and the regularization
relation) is a combinatorial relation among multiple L-values. It is for-
mulated as (6) for h = ΦN

KZ . It is Zhao’s remark [Z] that for specific N ’s
the generalized double shuffle relation does not provide all the possible
relations among multiple L-values.

Our main theorem is an implication of the generalised double shuffle
relation (6) from the mixed pentagon equation (4).
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Theorem 1. Let UFN+1 be the universal enveloping algebra of the free
Lie algebra FN+1 with variables A and B(a) (a ∈ Z/NZ). Let h be
a group-like element in UFN+1 with cB(0)(h) = 0 satisfying the mixed
pentagon equation (4) with a group-like series g ∈ UF2. Then h also
satisfies the generalised double shuffle relation (6).

The contents of the article are as follows: We recall the mixed penta-
gon equation in §1 and the generalised double shuffle relation in §2. In
§3 we calculate the 0-th cohomologies of Chen’s reduced bar complex
for the Kummer coverings of the moduli spaces M0,4 and M0,5. Two
variable cyclotomic multiple polylogarithms and their associated bar
elements there are introduced in §4. By using them, we prove theorem
1 in §5.

1. Mixed pentagon equation

This section is to recall Enriquez’ mixed pentagon equation [E].
Let us fix notations: For n > 2, the Lie algebra tn of infinitesimal

pure braids is the completed Q-Lie algebra with generators tij (i ̸= j,
1 6 i, j 6 n) and relations tij = tji, [tij, tik + tjk] = 0 and [tij, tkl] = 0
for all distinct i, j, k, l. We note that t2 is the 1-dimensional abelian Lie
algebra generated by t12. The element zn =

∑
16i<j6n t

ij is central in tn.

Put t0n to be the Lie subalgebra of tn with the same generators except t1n

and the same relations as tn. Then we have tn = t0n⊕Q · zn. Especially
when n = 3, t03 is a free Lie algebra F2 of rank 2 with generators A := t12

and B = t23. For a partially defined map f : {1, . . . ,m} → {1, . . . , n},
the Lie algebra morphism tn → tm : x 7→ xf = xf−1(1),...,f−1(n) is
uniquely defined by (tij)f =

∑
i′∈f−1(i),j′∈f−1(j) t

i′j′ .

For a pair (µ, g) ∈ Q× expF2 the pentagon equation is the following
equation in exp t04

(2) g1,2,34g12,3,4 = g2,3,4g1,23,4g1,2,3.

and two hexagon equations the following two equations in expF2 =
exp t03

(3) g(A,B)g(B,A) = 1 and

exp{µA
2

}g(C,A) exp{µC
2

}g(B,C) exp{µB
2

}g(A,B) = 1

with C = −A−B. These
By our notation, the equation (2) can be read as

g(t12, t23 + t24)g(t13 + t23, t34) = g(t23, t34)g(t12 + t13, t24 + t34)g(t12, t23).

Remark 2. It is shown in [F2] that the two hexagon equations (3) are
consequences of the pentagon equation (2).
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Remark 3. The Drinfel’d associator ΦKZ = ΦKZ(A,B) ∈ C⟨⟨A,B⟩⟩
is defined to be the quotient ΦKZ = G1(z)

−1G0(z) where G0 and G1

are the solutions of the formal KZ equation

d

dz
G(z) =

(A
z
+

B

z − 1

)
G(z)

such that G0(z) ≈ zA when z → 0 and G1(z) ≈ (1 − z)B when z → 1
(cf.[Dr]). The series has the following expression

ΦKZ = 1+
∑

(−1)mζ(k1, · · · , km)Akm−1B · · ·Ak1−1B+(regularized terms)

and the regularised terms are explicitly calculated to be linear combi-
nations of multiple zeta values ζ(k1, · · · , km) = L(k1, . . . , km; 1, . . . , 1)
in [F1] proposition 3.2.3 by Le-Murakami’s method [LM]. It is shown
in [Dr] that the pair (2π

√
−1, ΦKZ) satisfies the pentagon equation (2)

and the hexagon equations (3).

For n > 2 and N > 1, the Lie algebra tn,N is the completed Q-Lie
algebra with generators t1i (2 6 i 6 n), t(a)ij (i ̸= j, 2 6 i, j 6 n,
a ∈ Z/NZ) and relations t(a)ij = t(−a)ji, [t(a)ij, t(a+b)ik+t(b)jk] = 0,
[t1i + t1j +

∑
c∈Z/NZ t(c)

ij, t(a)ij] = 0, [t1i, t1j +
∑

c∈Z/NZ t(c)
ij] = 0,

[t1i, t(a)jk] = 0 and [t(a)ij, t(b)kl] = 0 for all a, b ∈ Z/NZ and all
distinct i, j, k, l (2 6 i, j, k, l 6 n). We note that tn,1 is equal to tn for
n > 2. We have a natural injection tn−1,N ↪→ tn,N . The Lie subalgebra
fn,N of tn,N generated by t1n and t(a)in (2 6 i 6 n − 1, a ∈ Z/NZ) is
free of rank (n− 2)N +1 and forms an ideal of tn,N . Actually it shows
that tn,N is a semi-direct product of fn,N and tn−1,N . The element
zn,N =

∑
16i<j6n t

ij with tij =
∑

a∈Z/NZ t(a)
ij (2 6 i < j 6 n) is

central in tn,N . Put t
0
n,N to be the Lie subalgebra of tn,N with the same

generators except t1n. Then we have tn,N = t0n,N⊕Q·zn,N . Occasionally

we regard t0n,N as the quotient tn,N/Q · zn,N . Especially when n = 3,

t03,N is free Lie algebra FN+1 of rank N + 1 with generators A := t12

and B(a) = t(a)23 (a ∈ Z/NZ).
For a partially defined map f : {1, . . . ,m} → {1, . . . , n} such that

f(1) = 1, the Lie algebra morphism tn,N → tm,N : x 7→ xf = xf−1(1),...,f−1(n)

is uniquely defined by (t(a)ij)f =
∑

i′∈f−1(i),j′∈f−1(j) t(a)
i′j′ (i ̸= j, 2 6

i, j 6 n) and (t1j)f =
∑

j′∈f−1(j) t
1j′ + 1

2

∑
j′,j′′∈f−1(j)

∑
c∈Z/NZ t(c)

j′j′′

+
∑

i′ ̸=1∈f−1(1),j′∈f−1(j)

∑
c∈Z/NZ t(c)

i′j′ (2 6 j 6 n). Again for a par-

tially defined map g : {2, . . . ,m} → {1, . . . , n}, the Lie algebra mor-

phism tn → tm,N : x 7→ xg = xg−1(1),...,g−1(n) is uniquely defined by
(tij)g =

∑
i′∈g−1(i),j′∈g−1(j) t(0)

i′j′ (i ̸= j, 1 6 i, j 6 n).
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For a pair (g, h) ∈ expF2 × expFN+1, the mixed pentagon equation
means the following equation in exp t04,N

(4) h1,2,34h12,3,4 = g2,3,4h1,23,4h1,2,3.

By our notation, each term in the equation (4) can be read as

h1,2,34 = h(t12, t23(0) + t24(0), t23(1) + t24(1), . . . , t23(N − 1) + t24(N − 1)),

h12,3,4 = h(t13 +
∑
c

t23(c), t34(0), t34(1), . . . , t34(N − 1)),

g2,3,4 = g(t23(0), t34(0)),

h1,23,4 = h(t12 + t13 +
∑
c

t23(c), t24(0) + t34(0), . . . , t24(N − 1) + t34(N − 1)),

h1,2,3 = h(t12, t23(0), t23(1), . . . , t23(N − 1)).

Remark 4. In [E], the cyclotomic analogue ΦN
KZ ∈ expFN+1(C) of

the Drinfel’d associator is introduced to be the renormalised holonomy
from 0 to 1 of the KZ-like differential equation

d

dz
H(z) =

(A
z
+

∑
a∈Z/NZ

B(a)

z − ζaN

)
H(z)

with ζN = exp{2π
√
−1

N
}, i.e., ΦN

KZ = H−1
1 H0 where H0 and H1 are the

solutions such that H0(z) ≈ zA when z → 0 and H1(z) ≈ (1 − z)B(0)

when z → 1 (cf.[E]). There appear multiple L-values (1) in each of its
coefficient;

ΦN
KZ = 1+

∑
(−1)mL(k1, · · · , km; ξ1, . . . , ξm)Akm−1B(am) · · ·Ak1−1B(a1)

(5)

+ (regularized terms)

with ξ1 = ζa2−a1
N , . . . , ξm−1 = ζ

am−am−1

N and ξm = ζ−am
N , where the

regularised terms can be explicitly calculated to combinations of mul-
tiple L-values by the method of Le-Murakami [LM]. In [E] it is shown
that the triple (2π

√
−1, ΦKZ , Φ

N
KZ) satisfies the mixed pentagon equa-

tion (4). This is achieved by considering monodromy in the pentagon
formed by the divisors y = 0, x = 1, the exceptional divisor of the

blowing-up at (1, 1), y = 1 and x = 0 in M(N)
0,5 (see §3).

Remark 5. In [EF] it is proved that the mixed pentagon equation
(4) implies the distribution relation for a specific case and that the
octagon equation follows from the mixed pentagon equation and the
special action condition for N = 2.
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2. Double shuffle relation

This section is to recall the generalised double shuffle relation in
Racinet’s setting [R].

Let us fix notations: Let FYN
be the completed graded Lie Q-algebra

generated by Yn,a (n > 1 and a ∈ Z/NZ) with deg Yn,a = n. Put UFYN

its universal enveloping algebra: the non-commutative formal series
ring with free variables Yn,a (n > 1 and a ∈ Z/NZ). Let πY : UFN+1 →
UFYN

be the Q-linear map between non-commutative formal power
series rings that sends all the words ending in A to zero and the word
Anm−1B(am) · · ·An1−1B(a1) (n1, . . . , nm > 1 and a1, . . . , am ∈ Z/NZ)
to

(−1)mYnm,−amYnm−1,am−am−1 · · ·Yn1,a2−a1 .

Define the coproduct ∆∗ of UFYN
by ∆∗Yn,a =

∑
k+l=n,b+c=a Yk,b ⊗ Yl,c

(n > 0 and a ∈ Z/NZ) with Y0,a := 1 if a = 0 and 0 if a ̸= 0. For
h =

∑
W :word cW (h)W ∈ UFN+1, define the series shuffle regularization

h∗ = hcorr · πY (h) with the correction term

hcorr = exp

(
∞∑
n=1

(−1)n

n
cAn−1B(0)(h)Y

n
1,0

)
.

For a series h ∈ expFN+1 the generalised double shuffle relation
stands for the following relation in UFYN

(6) ∆∗(h∗) = h∗⊗̂h∗.

Remark 6. The series ΦN
KZ (5) satisfies the generalised double shuffle

relation (6) because regularised multiple L-values satisfy the double
shuffle relation.

3. Bar constructions

This section gives a review of the notion of the reduced bar construc-

tion and calculates it for M(N)
0,4 and M(N)

0,5 .
We recall the notion of Chen’s reduced bar construction [C]. Let

(A• = ⊕∞
q=0A

q, d) be a differential graded algebra (DGA). The reduced

bar complex B̄•(A) is the tensor algebra ⊕∞
r=0(Ā

•)⊗r with Ā• = ⊕∞
i=0Ā

i

where Ā0 = A1/dA0 and Āi = Ai+1 (i > 0). We denote a1 ⊗ · · · ⊗ ar
(ai ∈ Ā•) by [a1| · · · |ar]. The degree of elements in B̄•(A) is given by
the total degree of Ā•. Put Ja = (−1)p−1a for a ∈ Āp. Define

d′[a1| · · · |ak] =
k∑

i=1

(−1)i[Ja1| · · · |Jai−1|dai|ai+1| · · · |ak]
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and

d′′[a1| · · · |ak] =
k∑

i=1

(−1)i−1[Ja1| · · · |Jai−1|Jai · ai+1|ai+2| · · · |ak].

Then d′+d′′ forms a differential. The differential and the shuffle product
(loc.cit.) give B̄•(A) a structure of commutative DGA. Actually it also
forms a Hopf algebra, whose coproduct ∆ is given by

∆([a1| · · · |ar]) =
r∑

s=0

[a1| · · · |as]⊗ [as+1| · · · |ar].

For a smooth complex manifold M, Ω•(M) means the de Rham
complex of smooth differential forms on M with values in C. We
denote the 0-th cohomology of the reduced bar complex B̄•(Ω(M))
with respect to the differential by H0B̄(M).

Let M0,4 be the moduli space {(x1, · · · , x4) ∈ (P1
C)

4|xi ̸= xj(i ̸=
j)}/PGL2(C) of 4 different points in P1. It is identified with {z ∈
P1

C|z ̸= 0, 1,∞} by sending [(0, z, 1,∞)] to z. Denote its Kummer
N -covering

Gm\µN = {z ∈ P1
C|zN ̸= 0, 1,∞}

by M(N)
0,4 . The space H0B̄(M(N)

0,4 ) is generated by

ω0 := d log(z) and ωζ := d log(z − ζ) (ζ ∈ µN).

We have an identification H0B̄(M(N)
0,4 ) with the graded C-linear dual

of UFN+1,

H0B̄(M(N)
0,4 ) ≃ UF∗

N+1 ⊗C,

by Exp Ω
(N)
4 :=

∑
Xim · · ·Xi1⊗[ωim | · · · |ωi1 ] ∈ UFN+1⊗̂QH

0B̄(M(N)
0,4 ).

Here the sum is taken over m > 0 and i1, · · · , im ∈ {0} ∪ µN and
X0 = A and Xζ = B(a) when ζ = ζaN . It is easy to see that the
identification is compatible with Hopf algebra structures. We note that

the product l1 · l2 ∈ H0B̄(M(N)
0,4 ) for l1, l2 ∈ H0B̄(M(N)

0,4 ) is given by

l1 · l2(f) :=
∑

i l1(f
(i)
1 )l2(f

(i)
2 ) for f ∈ UFN+1⊗C with ∆(f) =

∑
i f

(i)
1 ⊗

f
(i)
2 . Occasionally we regard H0B̄(M(N)

0,4 ) as the regular function ring of
FN+1(C) = {g ∈ UFN+1⊗C|g : group-like} = {g ∈ UFN+1⊗C|g(0) =
1,∆(g) = g ⊗ g}.

Let M0,5 be the moduli space {(x1, · · · , x5) ∈ (P1
C)

5|xi ̸= xj(i ̸=
j)}/PGL2(C) of 5 different points in P1. It is identified with {(x, y) ∈
G2

m|x ̸= 1, y ̸= 1, xy ̸= 1} by sending [(0, xy, y, 1,∞)] to (x, y). Denote
its Kummer N2-covering

{(x, y) ∈ G2
m|xN ̸= 1, yN ̸= 1, (xy)N ̸= 1}
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by M(N)
0,5 . It is identified with WN/C

× by (x, y) 7→ (xy, y, 1) where

WN = {(z2, z3, z4) ∈ Gm|zNi ̸= zNj (i ̸= j)}.

The space H0B̄(M(N)
0,5 ) is a subspace of the tensor coalgebra generated

by

ω1,i := d log zi and ωi,j(a) := d log(zi − ζaNzj) (2 6 i, j 6 4, a ∈ Z/N).

Proposition 7. We have an identification

H0B̄(M(N)
0,5 ) ≃ (Ut04,N)

∗ ⊗C.

Proof . By [K], H0B̄(WN) can be calculated to be the 0-th cohomology
H0B̄•(S) of the reduced bar complex of the Orlik-Solomon algebra
S•. The algebra S• is the (trivial-)differential graded C-algebra S• =
⊕∞

q=0S
q defined by generators

ω1,i = d log zi and ωi,j(a) = d log(zi − ζaNzj) (2 6 i, j 6 4, a ∈ Z/NZ)

in degree 1 and relations

ωi,j(a) = ωj,i(−a), ωij(a) ∧ {ωik(a+ b) + ωjk(b)} = 0,

{ω1i + ω1j +
∑

c∈Z/NZ

ω(c)ij} ∧ ω(a)ij = 0,

ω1i ∧ {ω1j +
∑

c∈Z/NZ

ω(c)ij} = 0,

ω1i ∧ ω(a)jk = 0 and ω(a)ij ∧ ω(b)kl = 0

for all a, b ∈ Z/NZ and all distinct i, j, k, l (2 6 i, j, k, l 6 n). By
direct calculation, the element

4∑
i=2

t1i ⊗ ω1i +
∑

26i<j64,a∈Z/NZ

tij(a)⊗ ωij(a) ∈ (t4,N)
deg=1 ⊗ S1

yields a Hopf algebra identification of H0B̄(WN) with (Ut4,N)
∗ ⊗ C

since both are quadratic.
By the long exact sequence of cohomologies induced from the Gm-

bundle WN → M(N)
0,5 = WN/C

×, we get

0 → H1(M(N)
0,5 ) → H1(WN) → H1(Gm) → 0

and
H i(M(N)

0,5 ) ≃ H i(WN) (i > 2).

It yields the identification of the subspace H0B̄(M(N)
0,5 ) of H0B̄(WN)

with (Ut04,N)
∗ ⊗C. �
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The above identification is induced from

Exp Ω
(N)
5 :=

∑
tJm · · · tJ1 ⊗ [ωJm| · · · |ωJ1 ] ∈ Ut04,N⊗̂QH

0B̄(M(N)
0,5 )

where the sum is taken over m > 0 and J1, · · · , Jm ∈ {(1, i)|2 6 i 6
4} ∪ {(i, j, a)|2 6 i < j 6 4, a ∈ Z/NZ}.

Especially the identification between degree 1 terms is given by

Ω
(N)
5 =

4∑
i=2

t1id log zi +
∑

26i<j64

∑
a∈Z/NZ

ti,j(a)d log(zi − ζaNzj)

∈ t04,N ⊗H1
DR(M

(N)
0,5 ).

In terms of the coordinate (x, y),

Ω
(N)
5 = t12d log(xy) + t13d log y +

∑
a

t23(a)d log y(x− ζaN)

+
∑
a

t24(a)d log(xy − ζaN) +
∑
a

t34(a)d log(y − ζaN)

= t12d log x+
∑
a

t23(a)d log(x− ζaN) + (t12 + t13 + t23)d log y

+
∑
a

t34(a)d log(y − ζaN) +
∑
a

t24(a)d log(xy − ζaN).

It is easy to see that the identification is compatible with Hopf algebra

structures. We note again that the product l1 · l2 ∈ H0B̄(M(N)
0,5 ) for

l1, l2 ∈ H0B̄(M(N)
0,5 ) is given by l1 · l2(f) :=

∑
i l1(f

(i)
1 )l2(f

(i)
2 ) for f ∈

Ut04,N ⊗ C with ∆(f) =
∑

i f
(i)
1 ⊗ f

(i)
2 (∆: the coproduct of Ut04,N).

Occasionally we also regard H0B̄(M(N)
0,5 ) as the regular function ring

of KN
4 (C) = {g ∈ Ut04,N ⊗C|g : group-like}.

By a generalization of Chen’s theory [C] to the case of tangential

basepoints, especially forM = M(N)
0,4 orM(N)

0,5 , we have an isomorphism

ρ : H0B̄(M) ≃ Io(M)

as algebras over C which sends
∑

I=(im,··· ,i1) cI [ωim| · · · |ωi1 ] (cI ∈ C)

to
∑

I cIIt
∫
o
ωim ◦ · · · ◦ ωi1 . Here

∑
I cIIt

∫
o
ωim ◦ · · · ◦ ωi1 means the

iterated integral defined by

(7)
∑
I

cI

∫
0<t1<···<tm−1<tm<1

ωim(γ(tm)) ·ωim−1(γ(tm−1)) · · · ·ωi1(γ(t1))

for all analytic paths γ : (0, 1) → M(C) starting from the tangential

basepoint o (defined by d
dz

for M = M(N)
0,4 and defined by d

dx
and d

dy

for M = M(N)
0,5 ) at the origin in M (for its treatment see also [De]§15)
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and Io(M) stands for the C-algebra generated by all such homotopy
invariant iterated integrals with m > 1 and ωi1 , . . . , ωim ∈ H1

DR(M).

4. Two variable cyclotomic multiple polylogarithms

We introduce cyclotomic multiple polylogarithms, Lia(ζ̄(z)) and

Lia,b(ζ̄(x), η̄(y)), and their associated bar elements, lζ̄a and l
ζ̄(x),η̄(y)
a,b ,

which play important roles to prove our main theorems.
For a pair (a, ζ̄) with a = (a1, · · · , ak) ∈ Zk

>0 and ζ̄ = (ζ1, . . . , ζk)
with ζi ∈ µN : the group of roots of unity in C (1 6 i 6 k), its
weight and its depth are defined to be wt(a, ζ̄) = a1 + · · · + ak and
dp(a, ζ̄) = k respectively. Put ζ̄(x) = (ζ1, . . . , ζk−1, ζkx). Put z ∈ C
with |z| < 1. Consider the following complex analytic function, one
variable cyclotomic multiple polylogarithm

Lia(ζ̄(z)) :=
∑

0<m1<···<mk

ζm1
1 · · · ζmk−1

k−1 (ζkz)
mk

ma1
1 · · ·mak−1

k−1 m
ak
k

.

It satisfies the following differential equation

d

dz
Lia(ζ̄(z)) =


1
z
Li(a1,··· ,ak−1,ak−1)(ζ̄(z)) if ak ̸= 1,
1

ζ−1
k −z

Li(a1,··· ,ak−1)(ζ1, . . . , ζk−2, ζk−1z) if ak = 1, k ̸= 1,

1
ζ−1
1 −z

if ak = 1, k = 1.

It gives an iterated integral starting from o, which lies on Io(M(N)
0,4 ).

Actually by the map ρ it corresponds to an element of the Q-structure

UF∗
N+1 of V (M(N)

0,4 ) denoted by lζ̄a. It is expressed as

lζ̄a = (−1)k[ω0| · · · |ω0︸ ︷︷ ︸
ak−1

|ωζ−1
k
|ω0| · · · |ω0︸ ︷︷ ︸

ak−1−1

|ωζ−1
k ζ−1

k−1
|ω0| · · · · · · |ω0|ωζ−1

k ···ζ−1
1
].

By the standard identification µ ≃ Z/NZ sending ζN = exp{2π
√
−1

N
} 7→

1, for a series φ =
∑

W :word cW (φ)W it is calculated by

lζ̄a(φ) = (−1)kcAak−1B(−ek)A
ak−1−1B(−ek−ek−1)···Aa1−1B(−ek−···−e1)

(φ)

with ζi = ζeiN (ei ∈ Z/NZ).
For a = (a1, · · · , ak) ∈ Zk

>0, b = (b1, · · · , bl) ∈ Zl
>0, ζ̄ = (ζ1, . . . , ζk),

η̄ = (η1, . . . , ηl) with ζi, ηj ∈ µN and x, y ∈ C with |x| < 1 and |y| <
1, consider the following complex function, the two variables multiple
polylogarithm

Lia,b(ζ̄(x), η̄(y)) :=
∑

0<m1<···<mk

<n1<···<nl

ζm1
1 · · · ζmk−1

k−1 (ζkx)
mk · ηn1

1 · · · ηnl−1

l−1 (ηly)
nl

ma1
1 · · ·mak−1

k−1 m
ak
k · nb1

1 · · ·nbl−1

l−1 n
bl
l

.
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It satisfies the following differential equations.

d

dx
Lia,b(ζ̄(x), η̄(y))

=



1
x
Li(a1,··· ,ak−1,ak−1),b(ζ̄(x), η̄(y)) if ak ̸= 1,
1

ζ−1
k −x

Li(a1,··· ,ak−1),b(ζ1, . . . , ζk−2, ζk−1x, η̄(y))−
(

1
x
+ 1

ζ−1
k −x

)
·

Li(a1,··· ,ak−1,b1),(b2,··· ,bl)(ζ1, . . . ζk−1, ζkη1x, η2, . . . , ηl−1, ηly)

if ak = 1, k ̸= 1, l ̸= 1,
1

ζ−1
1 −x

Lib(η(y))−
(

1
x
+ 1

ζ−1
1 −x

)
Li(b1),(b2,··· ,bl)(ζ1η1x, η2, . . . , ηl−1, ηly)

if ak = 1, k = 1, l ̸= 1,
1

ζ−1
k −x

Li(a1,··· ,ak−1),b1(ζ1, . . . , ζk−1x, η1y)−
(

1
x
+ 1

ζ−1
k −x

)
·

Li(a1,··· ,ak−1,b1)(ζ1, . . . , ζk−1, ζkη1xy) if ak = 1, k ̸= 1, l = 1,
1

ζ−1
1 −x

Lib1(η1y)−
(

1
x
+ 1

ζ−1
1 −x

)
Lib1(ζ1η1xy) if ak = 1, k = 1, l = 1,

d

dy
Lia,b(ζ̄(x), η̄(y))

=


1
y
Lia,(b1,··· ,bl−1,bl−1)(ζ̄(x), η̄(y)) if bl ̸= 1,
1

η−1
l −y

Lia,(b1,··· ,bl−1)(ζ̄(x), η1, . . . , ηl−2, ηl−1y) if bl = 1, l ̸= 1,

1
η−1
1 −y

Lia(ζ̄(η1xy)) if bl = 1, l = 1.

By analytic continuation, the functions Lia,b(ζ̄(x), η̄(y)), Lib,a(η̄(y), ζ̄(x)),
Lia(ζ̄(x)), Lia(ζ̄(y)) and Lia(ζ̄(xy)) give iterated integrals starting

from o, which lie on Io(M(N)
0,5 ). They correspond to elements of the

Q-structure (U t04,N)
∗ of V (M(N)

0,5 ) by the map ρ denoted by l
ζ̄(x),η̄(y)
a,b ,

l
η̄(y),ζ̄(x)
b,a , l

ζ̄(x)
a , l

η̄(y)
a and l

ζ̄(xy)
a respectively. Note that they are expressed

as ∑
I=(im,··· ,i1)

cI [ωim| · · · |ωi1 ]

for some m ∈ N with cI ∈ Q and ωij ∈ {dx
x
, dx
ζ−x

, dy
y
, dy
ζ−y

, xdy+ydx
ζ−xy

(ζ ∈
µN)}.

5. Proof of main theorems

This section gives a proof of theorem 1.
Proof of theorem 1. Let a = (a1, . . . , ak) ∈ Zk

>0, b = (b1, . . . , bl) ∈
Zl

>0, ζ̄ = (ζ1, . . . , ζk) and η̄ = (η1, . . . , ηl) with ζi, ηj ∈ µN ⊂ C
(1 6 i 6 k and 1 6 j 6 l). Put ζ̄(x) = (ζ1, . . . , ζk−1, ζkx) and



MIXED PENTAGON EQUATION AND DOUBLE SHUFFLE RELATION 11

η̄(y) = (η1, . . . , ηl−1, ηly). Recall that multiple polylogarithms satisfy

the following analytic identity, the series shuffle formula in Io(M(N)
0,5 ):

Lia(ζ̄(x)) · Lib(η̄(y)) =
∑

σ∈Sh6(k,l)

Li
σ(ζ̄(x),η̄(y))
σ(a,b) .

Here Sh6(k, l) := ∪∞
N=1{σ : {1, · · · , k+l} → {1, · · · , N}|σ is onto, σ(1) <

· · · < σ(k), σ(k + 1) < · · · < σ(k + l)}, σ(a,b) := (c1, · · · , cN) with

ci =


as + bt−k if σ−1(i) = {s, t} with s < t,

as if σ−1(i) = {s} with s 6 k,

bs−k if σ−1(i) = {s} with s > k,

and σ(ζ̄(x), η̄(y)) := (z1, . . . , zN) with

zi =


xsyt−k if σ−1(i) = {s, t} with s < t,

xs if σ−1(i) = {s} with s 6 k,

ys−k if σ−1(i) = {s} with s > k,

for xi = ζi (i ̸= k), ζkx (i = k) and yj = ηj (j ̸= l), ηjy (j =
l). Since ρ is an embedding of algebras, the above analytic identity
immediately implies the algebraic identity, the series shuffle formula in

the Q-structure (U t04,N)
∗ of V (M(N)

0,5 )

(8) lζ̄(x)a · lη̄(y)b =
∑

σ∈Sh6(k,l)

l
σ(ζ̄(x),η̄(y))
σ(a,b) .

Let (g, h) be a pair in theorem 1. By the group-likeness of h, i.e.
h ∈ expFN+1, the product h1,23,4h1,2,3 is group-like, i.e. belongs to
exp t04,N . Hence ∆(h1,23,4h1,2,3) = (h1,23,4h1,2,3)⊗̂(h1,23,4h1,2,3), where ∆

is the standard coproduct of U t04,N . Therefore

lζ̄(x)a · lη̄(y)b (h1,23,4h1,2,3) = (lζ̄(x)a ⊗̂l
η̄(y)
b )(∆(h1,23,4h1,2,3))

= lζ̄(x)a (h1,23,4h1,2,3) · lη̄(y)b (h1,23,4h1,2,3).

Evaluation of the equation (8) at the group-like element h1,23,4h1,2,3

gives the series shuffle formula

(9) lζ̄a(h) · l
η̄
b(h) =

∑
σ∈Sh6(k,l)

l
σ(ζ̄,η̄)
σ(a,b)(h)

for admissible pairs 1 (a, ζ̄) and (b, η̄) by the results in [F4] because
the group-likeness and (4) for h implies c0(h) = 1 and cA(h) = 0.

1A pair (a, ζ̄) with a = (a1, · · · , ak) and ζ̄ = (ζ1, . . . , ζk) is called admissible if
(ak, ζk) ̸= (1, 1).
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By putting l1,S1 (h) := −T and lζ̄,Sa (h) := lζ̄a(h) for all admissible pairs

(a, ζ̄), the series regularized value lζ̄,Sa (h) inQ[T ] (T : a parameter which
stands for log z, cf. [R]) for a non-admissible pair (a, ζ̄) is uniquely de-
termined in such a way (cf.[AK]) that the above series shuffle formulae

remain valid for lζ̄,Sa (h) with all pairs (a, ζ̄).

Define the integral regularized value lζ̄,Ia (h) in Q[T ] for all pairs (a, ζ̄)

by lζ̄,Ia (h) = lζ̄a(e
TB(0)h). Equivalently lζ̄,Ia (h) for any pair (a, ζ̄) can

be uniquely defined in such a way that the iterated integral shuffle
formulae (loc.cit) remain valid for all pairs (a, ζ̄) with l1,I1 (h) := −T

and lζ̄,Ia (h) := lζ̄a(h) for all admissible pairs (a, ζ̄) because they hold for
admissible pairs by the group-likeness of h (cf. loc.cit).

Let L be the Q-linear map from Q[T ] to itself defined via the gen-
erating function:

L(expTu) =
∞∑
n=0

L(T n)
un

n!
= exp

{
−

∞∑
n=1

l1,In (h)
un

n

}
.

Proposition 8. Let h be an element as in theorem 1. Then the regu-
larization relation holds, i.e. lζ̄,Sa (h) = L

(
lζ̄,Ia (h)

)
for all pairs (a, ζ̄).

Proof . We may assume that (a, ζ̄) is non-admissible because the
proposition is trivial if it is admissible. Put 1n = (1, 1, · · · , 1︸ ︷︷ ︸

n

). When

a = 1n and ζ̄ = 1̄n, the proof is given by the same argument to [F3] as
follows: By the series shuffle formulae,

m∑
k=0

(−1)kl1̄,Sk+1(h) · l
1̄m−k,S
1m−k (h) = (m+ 1)l1̄

m+1,S
1m+1 (h)

for m > 0. Here we put l∅,S∅ (h) = 1. This means∑
k,l>0

(−1)kl1̄,Sk+1(h) · l
1̄l,S
1l

(h)uk+l =
∑
m>0

(m+ 1)l1̄
m+1,S

1m+1 (h)um.

Put f(u) =
∑

n>0 l
1̄n,S
1n (h)un. Then the above equality can be read as∑
k>0

(−1)kl1̄,Sk+1(h)u
k =

d

du
log f(u).

Integrating and adjusting constant terms gives∑
n>0

l1̄
n,S

1n (h)un = exp

{
−
∑
n>1

(−1)nl1̄,Sn (h)
un

n

}
= exp

{
−
∑
n>1

(−1)nl1̄,In (h)
un

n

}
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because l1̄,Sn (h) = l1̄,In (h) = l1n(h) for n > 1 and l1̄,S1 (h) = l1̄,I1 (h) = −T .

Since l1̄
m,I

1m (h) = (−T )m

m!
, we get l1̄

m,S
1m (h) = L

(
l1̄

m,I
1m (h)

)
.

When (a, ζ̄) is of the form (a′1l, ζ̄ ′1̄l) with (a′, ζ̄ ′) admissible, the
proof is given by the following induction on l. By (8),

l
ζ̄′(x)
a′ (h′) · l1̄

l(y)

1l
(h′) =

∑
σ∈Sh6(k,l)

l
σ(ζ̄′(x),1̄l(y))

σ(a′,1l)
(h′)

for h′ = eT{t23(0)+t24(0)+t34(0)}h1,23,4h1,2,3 with k = dp(a′). The group-
likeness and (4) for h implies c0(h) = 1 and cA(h) = 0 and the group-
likeness and our assumption cB(0)(h) = 0 implies cB(0)n(h) = 0 for
n ∈ Z>0. Hence by the results in [F4]

lζ̄
′

a′(h) · l1̄
l,I

1l
(h) =

∑
σ∈Sh6(k,l)

l
σ(ζ̄′,1̄l),I

σ(a′,1l)
(h).

Then by our induction assumption, taking the image by the map L
gives

lζ̄
′

a′(h) · l1̄
l,S

1l
(h) = L

(
lζ̄

′1̄l,I
a′1l

(h)
)
+

∑
σ ̸=id∈Sh6(k,l)

l
σ(ζ̄′,1̄l),S

σ(a′,1l)
(h).

Since lζ̄
′,S

a′ (h) and l1̄
l,S

1l
(h) satisfy the series shuffle formula, L

(
lζ̄,Ia (h)

)
must be equal to lζ̄,Sa (h), which concludes proposition 8. �

Embed UFYN
into UFN+1 by sending Ym,a to −Am−1B(−a). Then

by the above proposition,

lζ̄,Sa (h) = L(lζ̄,Ia (h)) = L(lζ̄a(eTB(0)h)) = lζ̄a
(
L(eTB(0)πY (h))

)
= lζ̄a(exp

{
−

∞∑
n=1

l1,In (h)
B(0)n

n

}
· πY (h))

= lζ̄a(exp

{
−TY1,0 +

∞∑
n=1

(−1)n

n
cAn−1B(0)(h)Y

n
1,0

}
· πY (h)) = lζ̄a(e

−TY1,0h∗)

for all (a, ζ̄) because l11(h) = 0. As for the third equality we use (L⊗Q

id)◦ (id⊗Q lζ̄a) = (id⊗Q lζ̄a)◦ (L⊗Q id) on Q[T ]⊗QUFN+1. All l
ζ̄,S
a (h)’s

satisfy the series shuffle formulae (9), so the lζ̄a(e
−TY1,0h∗)’s do also.

By putting T = 0, we get that lζ̄a(h∗)’s also satisfy the series shuffle
formulae for all a. Therefore ∆∗(h∗) = h∗⊗̂h∗. This completes the
proof of theorem 1. �
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