KONTSEVISH'S EYE, LIE GRAPHS AND THE ALEKSEEV-TOROSSIAN ASSOCIATOR

HIDEKAZU FURUSHO

Abstract

After we recall the definition of Kontsevich's eye $\bar{C}_{2,0}$ and the notion of Lie graphs, we explain how to construct the new associator Φ_{AT} of Alekseev and Torossian by using a holonomy of differential equation, made by Lie graphs, on $\bar{C}_{2,0}$, and also introduce the AT-analogues of multiple zeta values.

We start by recalling the compactified configuration spaces and weights of Lie graphs [K03].

Let $n \geqslant 1$. For a topological space X, we define

$$
\operatorname{Conf}_{n}(X):=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \neq x_{j}(i \neq j)\right\}
$$

The group

$$
\text { Aff }_{+}:=\left\{x \mapsto a x+b \mid a \in \mathbb{R}_{+}^{\times}, b \in \mathbb{C}\right\}
$$

acts on $\operatorname{Conf}_{n}(\mathbb{C})$ diagonally by rescallings and parallel translations. We denote the quotient by

$$
C_{n}:=\operatorname{Conf}_{n}(\mathbb{C}) / \mathrm{Aff}_{+}
$$

for $n \geqslant 2$, which is a connected oriented smooth manifold with dimension $2 n-3$.

Example 1. $\quad C_{2} \simeq S^{1}$.

- $C_{3} \simeq S^{1} \times\left(\mathrm{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right)$.

For a finite set I with $|I|=n$, we put $C_{I}=C_{n}$. For $I^{\prime} \subset I$ with $\left|I^{\prime}\right|>1$, we have the pull-back map $C_{I} \rightarrow C_{I^{\prime}}$.

Put

$$
\operatorname{Conf}_{n, m}(\mathbb{H}, \mathbb{R}):=\operatorname{Conf}_{n}(\mathbb{H}) \times \operatorname{Conf}_{m}(\mathbb{R})
$$

with the coordinate $\left(z_{1}, \ldots, z_{n}, x_{1}, \ldots, x_{m}\right)$, where \mathbb{H} is the upper half plane. The group

$$
\mathrm{Aff}_{+}^{\mathbb{R}}:=\left\{x \mapsto a x+b \mid a \in \mathbb{R}_{+}^{\times}, b \in \mathbb{R}\right\}
$$

Date: November 16, 2018.
This article is for the proceedings of the 26th Number Theory Summer School on 2018.
acts there diagonally and we denote the quotient by

$$
C_{n, m}:=\operatorname{Conf}_{n, m}(\mathbb{H}, \mathbb{R}) / \mathrm{Aff}_{+}^{\mathbb{R}}
$$

for $n, m \geqslant 0$ with $2 n+m \geqslant 2$. It is an oriented smooth manifold with dimension $2 n+m-2$ and with m ! connected components.

Example 2. - $C_{0,2} \simeq\{ \pm 1\}, \quad C_{0,2}^{+}=\{+1\}, C_{0,2}^{-}:=\{-1\}$.

- $C_{1,1} \simeq\left\{e^{\sqrt{-1} \pi \theta} \mid 0<\theta<1\right\}$.
- $C_{2,0} \simeq \mathbb{H}-\{\sqrt{-1}\}$.

For a finite set I and J with $|I|=n$ and $|J|=m$, we put $C_{I, J}=C_{n, m}$. Then for $I^{\prime} \subset I$ and $J^{\prime} \subset J$, we have the pull-back map $C_{I, J} \rightarrow C_{I^{\prime}, J^{\prime}}$.

Below we recall ${ }^{1}$ Kontsevich's [K03] compactifications \bar{C}_{n} and $\bar{C}_{n, m}$ of C_{n} and $C_{n, m}$ à la Fulton-MacPherson (in more detail, consult [Si]):
Definition 3. For a finite set I with $|I|=n$, we put

$$
\tilde{C}_{I}:=\tilde{C}_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} z_{i}=0\right\} \cap S^{2 n-1}
$$

By identifying it with $\mathbb{C}^{n}-\operatorname{diag} /$ Aff $_{+}(\operatorname{diag}=\{(z, \ldots, z) \mid z \in \mathbb{C}\})$, we obtain an embedding $C_{I} \hookrightarrow \tilde{C}_{I}$. The compactification

$$
\bar{C}_{I}=\bar{C}_{n}
$$

is a compact topological manifold with corners which is defined to be the closure of the image of the associated embedding

$$
\Phi: C_{I} \hookrightarrow \prod_{J \subset I, 1<|J|} \tilde{C}_{J}
$$

While by the embedding $\operatorname{Conf}_{n, m}(\mathbb{H}, \mathbb{R}) \hookrightarrow \operatorname{Conf}_{2 n+m}(\mathbb{C})$ sending $\left(z_{1}, \ldots, z_{n}, x_{1}, \ldots, x_{m}\right) \mapsto\left(z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}, x_{1}, \ldots, x_{m}\right)$, we have an embedding $C_{n, m} \hookrightarrow C_{2 n+m}$. By combining it with Φ, we obtain an embedding $C_{n, m} \hookrightarrow \bar{C}_{2 n+m}$. The compactification

$$
\bar{C}_{I, J}=\bar{C}_{n, m}
$$

is a compact topological manifold with corners which is defined to be the closure of the embedding.

They are functorial with respect to the inclusions of two finite sets, i.e. $I_{1} \subset I_{2}$ and $J_{1} \subset J_{2}$ with $\sharp\left(I_{k}\right)=n_{k}$ and $\sharp\left(J_{k}\right)=m_{k}(k=1,2)$ yield a natural map $\bar{C}_{n_{2}, m_{2}} \rightarrow \bar{C}_{n_{1}, m_{1}}$.

The stratification of his compactification has a very nice description in terms of trees in [K03] (also refer [CKTB]).

[^0]Example 4. - $\bar{C}_{0,2}=C_{0,2} \simeq\{ \pm 1\}$,

- $\bar{C}_{1,1}=C_{1,1} \sqcup C_{0,2}=\left\{e^{\sqrt{-1} \pi \theta} \mid 0 \leqslant \theta \leqslant 1\right\}$,
- $\bar{C}_{2,0}=C_{2,0} \sqcup C_{1,1} \sqcup C_{1,1} \sqcup C_{2} \sqcup C_{0,2}$.

The $\bar{C}_{2,0}$ is called Kontsevich's eye and its each component bears a special name as is indicated in Figure 1. The upper (resp. lower) eyelid

Figure 1. Kontsevich's eye $\bar{C}_{2,0}$
corresponds to z_{1} (resp. z_{2}) on the the real line. The iris magnifies collisions of z_{1} and z_{2} on \mathbb{H}. LC (resp. RC) which stands for the left (resp. right) corner is the configuration of $z_{1}>z_{2}$ (resp. $z_{1}<z_{2}$) on the real line.

Definition 5. The angle map $\phi: \bar{C}_{2,0} \rightarrow \mathbb{R} / \mathbb{Z}$ is the map induced from the map $\operatorname{Conf}_{2}(\mathbb{H}) \rightarrow \mathbb{R} / \mathbb{Z}$ sending

$$
\begin{equation*}
\phi:\left(z_{1}, z_{2}\right) \mapsto \frac{1}{2 \pi} \arg \left(\frac{z_{2}-z_{1}}{z_{2}-\bar{z}_{1}}\right) . \tag{1}
\end{equation*}
$$

We note that ϕ is identically zero on the upper eyelid but is not on the lower eyelid.

Next we will recall the notion of Lie graphs and their weight functions and 1-forms.

Definition 6. Let $n \geqslant 1$. A Lie graph Γ of type $(n, 2)$ is a graph consisting of two finite sets, the set of vertices $V(\Gamma):=\{1,2$, , (1), (2) , .., (n) $\}$ and the set of edges $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$. The points 1 and 2 are called as the ground points, while the points (1), (2), \ldots, (n) are called
as the air points. We equip $V(\Gamma)$ with the total order $1<2<$ (1) $<$ (2) $<\cdots<$ n.

For each $e \in E(\Gamma)$, under the inclusion $E(\Gamma) \subset V(\Gamma) \times V(\Gamma)$, we call the corresponding first (resp. second) component $s(e)$ (resp. $t(e)$) as the source (resp. the target) of e and denote as $e=(s(e), t(e))$. We equip $E(\Gamma)$ with the lexicographic order induced from that of $V(\Gamma)$. Both $V(\Gamma)$ and $E(\Gamma)$ are subject to the following conditions:
(i) An air point fires two edges: That means there always exist two edges with the source (i for each $i=1, \ldots, n$.
(ii) An air point is shot by one edge at most: That means there exists at most one edge with its target (i) for each $i=1, \ldots, n$.
(iii) A ground point never fire edges: That means there is no edge with its source on ground points.
(iv) The graph Γ becomes a rooted trivalent tree after we cut off small neighborhoods of ground points: That means that the graph of Γ admits a unique vertex (called the root) shoot by no edges and it gives a rooted trivalent trees if we regard the vertex as a root and distinguish all targets of edges firing ground points.

Let Γ be a Lie graph of type $(n, 2)$. We define a Lie monomial $\Gamma(A, B) \in \widehat{\mathfrak{f}}_{2}$ of degree $n+1$ to be the associated element with the root by the following procedure: With 1 and 2 , we assign A and $B \in \widehat{\mathfrak{f}}_{2}$ respectively. With each internal vertex v firing two edges $e_{1}=\left(v, w_{1}\right)$ and $e_{2}=\left(v, w_{2}\right)$ such that $e_{1}<e_{2}$, we assign $\left[\Gamma_{1}, \Gamma_{2}\right] \in \widehat{\mathfrak{f}}_{2}$ where Γ_{1} and $\Gamma_{2} \in \widehat{\mathfrak{f}}_{2}$ are the corresponding Lie monomials with the vertices w_{1} and w_{2} respectively. Recursively we may assign Lie elements with all vertices of Γ.

Example 7. Figure 2 is an example of Lie graph of type (3,2). Its root is (3). The associated Lie elements of the vertices 1 , 2, (1), (2), (3) are $A, B,[A, B],[B,[A, B]],[B,[B,[A, B]]]$ respectively.

Each $e \in E(\Gamma)$ determines a subset $\{s(e), t(e)\} \subset V(\Gamma)$ with $|V(\Gamma)|=$ $n+2$ which yields a pull-back $p_{e}: \bar{C}_{n+2,0} \rightarrow \bar{C}_{2,0}$. By composing it with the angle map (1), we get a map $\phi_{e}: \bar{C}_{n+2,0} \rightarrow \mathbb{R} / \mathbb{Z}$. The $\mathrm{PA}^{2} 2 n$-forms Ω_{Γ} on $\bar{C}_{n+2,0}$ (which is $2 n$-dimensional compact space) associated with Γ is given by the ordered exterior product

$$
\Omega_{\Gamma}:=\wedge_{e \in E(\Gamma)} d \phi_{e} \in \Omega_{\mathrm{PA}}^{2 n}\left(\bar{C}_{n+2,0}\right) .
$$

Here $\Omega_{\mathrm{PA}}^{2 n}\left(\bar{C}_{n+2,0}\right)$ means the space of PA $2 n$-forms of $\bar{C}_{n+2,0}$

[^1]

Figure 2. $\Gamma(A, B)=[B,[B,[A, B]]]$

Definition 8. (i). Put $\pi: \bar{C}_{n+2,0} \rightarrow \bar{C}_{2,0}$ to be the above projection induced from the inclusion $\{\sqrt{1}, 2\} \subset\{[1,2,(1),(2), \ldots,(n)\}$. The weight function (see $[\mathrm{To}]$) of Γ is the smooth function $w_{\Gamma}: \bar{C}_{2,0} \rightarrow \mathbb{C}$ defined by $w_{\Gamma}:=\pi_{*}\left(\Omega_{\Gamma}\right)$ where π_{*} is the push-forward (the integration along the fiber of the projection π, cf. [HLTV]), that is, the function which assigns $\xi \in \bar{C}_{2,0}$ with

$$
w_{\Gamma}(\xi)=\int_{\pi^{-1}(\xi)} \Omega_{\Gamma} \in \mathbb{C}
$$

(ii). We denote $L \Gamma$ (resp. $R \Gamma$) to be a graph obtained from Γ by adding one more edge e_{L} from $\sqrt{1}$ (resp. e_{R} from $\sqrt[2]{ }$) to the root of Γ. The regular $(2 n+1)$-form $\Omega_{L \Gamma}$ (resp. $\Omega_{R \Gamma}$) on $\bar{C}_{n+2,0}$ is defined to be

$$
\Omega_{L \Gamma}:=d \phi_{e_{L}} \wedge \Omega_{\Gamma} \quad\left(\text { resp. } \quad \Omega_{R \Gamma}:=d \phi_{e_{R}} \wedge \Omega_{\Gamma}\right)
$$

in $\Omega_{\mathrm{PA}}^{2 n}\left(\bar{C}_{n+2,0}\right)$. The one-forms $\omega_{L \Gamma}$ and $\omega_{R \Gamma}$, which we call the weight forms of Γ here, are the PA one-forms of $\bar{C}_{2,0}$ respectively defined by

$$
\omega_{L \Gamma}:=\pi_{*}\left(\Omega_{L \Gamma}\right) \quad \text { and } \quad \omega_{R \Gamma}:=\pi_{*}\left(\Omega_{R \Gamma}\right)
$$

in $\Omega_{\mathrm{PA}}^{1}\left(\bar{C}_{2,0}\right)$, i.e. they are one-forms respectively defined by

$$
\omega_{L \Gamma}(\xi)=\int_{\pi^{-1}(\xi)} \Omega_{L \Gamma}, \quad \text { and } \quad \omega_{R \Gamma}(\xi)=\int_{\pi^{-1}(\xi)} \Omega_{R \Gamma}
$$

where ξ runs over $\bar{C}_{2,0}$.
Remark 9. (i). Particularly the special value $w_{\Gamma}(\mathrm{RC})$ of the function $w_{\Gamma}(\xi)$ at $\xi=\mathrm{RC}$ is called the Kontsevich weight of Γ and denoted simply by w_{Γ}. It appears as a coefficient of Kontsevich's formula on deformation quantization in [K03].
(ii). While its restriction $\left.w_{\Gamma}\right|_{C_{2}}$ to the iris C_{2} is identically 0 because $\left.\Omega_{\Gamma}\right|_{C_{2}}=0$ due to the occurrence of double edges.

Example 10. (i). For Γ depicted in Figure 3, by calculations of Torossian [To] we have

- $\omega_{\Gamma}=(-1)^{n} \frac{B_{n}}{n!}$
- $\omega_{\Gamma}(\theta)=(-1)^{n} \frac{B_{n}\left(\frac{\theta}{\pi}\right)}{n!}$ where θ is the local parameter of the upper eyelid $C_{1,1}$ and $B_{n}(x)$ is the Bernoulli polynomial defined by $\sum_{n \geqslant 0} \frac{B_{n}(x) t^{n}}{n!}=\frac{t e^{x t}}{e^{t}-1}$.
- While the restriction of ω_{Γ} to lower eyelid is not well-understood.

Figure 3. $\Gamma(A, B)=(\operatorname{ad} A)^{n}(B)$
(ii). G. Felder and Willwacher $[\mathrm{FeW}]$ showed that for Γ depicted in Figure 4 we have

Figure 4. $\Gamma(A, B)=(\operatorname{ad} A)^{4}(\operatorname{ad} B)^{2}([A, B])$

$$
\omega_{\Gamma}=a \frac{\zeta(3)^{2}}{\pi^{6}}+b
$$

with some rational numbers a and b. Since it is conjectured that $\frac{\zeta(3)^{2}}{\pi^{6}} \notin$ \mathbb{Q}, the Kontsevich weights might not be always rational.

Remark 11. It looks unknown if Kontsevich weights of Lie graphs can be expressed as algebraic combinations of multiple zeta values and $(2 \pi \sqrt{-1})^{ \pm 1}$ or not.

Let tder_{2} be the Lie algebra consisting of tangential derivations $\operatorname{der}(\alpha, \beta): \widehat{\mathfrak{f}}_{2} \rightarrow \widehat{\mathfrak{f}}_{2}\left(\alpha, \beta \in \widehat{\mathfrak{f}}_{2}\right)$ such that $A \mapsto[A, \alpha]$ and $B \mapsto[B, \beta]$. A connection valued there

$$
\omega_{\mathrm{AT}}=\operatorname{der}\left(\omega_{L}, \omega_{R}\right) \in \operatorname{tder}_{2} \widehat{\otimes} \Omega_{\mathrm{PA}}^{1}\left(\bar{C}_{2,0}\right)
$$

is introduced in [AT10, To]. Here $\Omega_{\mathrm{PA}}^{1}\left(\bar{C}_{2,0}\right)$ means the space of PA one-forms of $\bar{C}_{2,0}$ and

$$
\begin{aligned}
& \omega_{L}:=B \cdot \quad d \phi+\sum_{n \geqslant 1} \sum_{\Gamma \in \mathrm{LieGram}_{n, 2}^{\mathrm{gom}}} \Gamma(A, B) \cdot \omega_{L \Gamma}, \\
& \omega_{R}:=A \cdot \sigma^{*}(d \phi)+\sum_{n \geqslant 1} \sum_{\Gamma \in \mathrm{LieGr}_{n, 2}^{\mathrm{geom}}} \Gamma(A, B) \cdot \omega_{R \Gamma} .
\end{aligned}
$$

with the set LieGra ${ }_{n, 2}^{\text {geom }}$ of geometric (it means non-labeled) Lie graphs of type $(n, 2)$ (cf. Definition 6). We note that both Ω_{Γ} and $\Gamma(A, B)$ require the order of $E(\Gamma)$ however their product $\Omega_{\Gamma} \cdot \Gamma(A, B)$ does not (cf. [CKTB]), whence both ω_{L} and ω_{R} do not require labels. The symbol σ stands for the involution of $\bar{C}_{2,0}$ caused by the switch of z_{1} and z_{2}.

In [AT10] they considered the following differential equation on $\bar{C}_{2,0}$ which was shown to be flat:

$$
\begin{equation*}
d g(\xi)=-g(\xi) \cdot \omega_{\mathrm{AT}} \tag{2}
\end{equation*}
$$

with $g(\xi) \in$ TAut $_{2}:=\exp \operatorname{tder}_{2}$, the pro-algebraic subgroup of Aut ${ }_{2}$ consisting of tangential automorphisms $\operatorname{Int}(\alpha, \beta): \widehat{\mathfrak{f}}_{2} \rightarrow \widehat{\mathfrak{f}}_{2}(\alpha, \beta \in$ $\exp \widehat{\mathfrak{f}}_{2}$) such that $A \mapsto \alpha^{-1} A \alpha$ and $B \mapsto \beta^{-1} B \beta$. They denote its parallel transport (its holonomy) of (2) for the straight path from α_{0} (the position 0 at the iris, see Figure 5) to RC by $F_{\mathrm{AT}} \in \mathrm{TAut}_{2}$.

Figure 5. Parallel transport

Definition 12 ([AT10]). The AT-associator Φ_{AT} is defined to be

$$
\begin{equation*}
\Phi_{\mathrm{AT}}:=F_{\mathrm{AT}}^{1,23} \circ F_{\mathrm{AT}}^{2,3} \circ\left(F_{\mathrm{AT}}^{1,2}\right)^{-1} \circ\left(F_{\mathrm{AT}}^{12,3}\right)^{-1} \in \mathrm{TAut}_{3} . \tag{3}
\end{equation*}
$$

Here for any $T=\operatorname{Int}(\alpha, \beta) \in$ TAut $_{2}$, we denote

$$
\begin{aligned}
T^{1,2}:= & \operatorname{Int}(\alpha(A, B), \beta(A, B), 1), \quad T^{2,3}:=\operatorname{Int}(1, \alpha(B, C), \beta(B, C)), \\
& T^{1,23}:=\operatorname{Int}(\alpha(A, B+C), \beta(A, B+C), \beta(A, B+C)), \\
& T^{12,3}:=\operatorname{Int}(\alpha(A+B, C), \alpha(A+B, C), \beta(A+B, C))
\end{aligned}
$$

in $\mathrm{TAut}_{3}:=\exp \operatorname{tder}_{3}$ which is similarly defined to be the group of tangential automorphisms of the completed free Lie algebra $\widehat{\mathfrak{f}_{3}}$ with variables A, B and C.

We note that there is a Lie algebra inclusion $\widehat{\mathfrak{f}}_{2} \hookrightarrow$ tder $_{3}$ sending

$$
\begin{equation*}
A \mapsto t_{12}:=\operatorname{der}(B, A, 0) \quad \text { and } \quad B \mapsto t_{23}:=\operatorname{der}(0, C, B) \tag{4}
\end{equation*}
$$

which induces an inclusion $\exp \widehat{\mathfrak{f}}_{2} \hookrightarrow$ TAut $_{3}$.
Theorem 13 ([AT12, SW]). The AT-assocciator Φ_{AT} forms an associator. Namely it belongs to $\exp \widehat{\mathfrak{f}}_{2}(\subset \mathbb{C}\langle\langle A, B\rangle\rangle)$ and satisfies the equations $[\mathrm{Dr}]$ (2.12), (2.13) and (5.3). Furthermore it is real (i.e. it belongs to the real structure $\mathbb{R}\langle\langle A, B\rangle\rangle)$ and even. ${ }^{3}$

The following gives a more direct presentation of Φ_{AT}.
Theorem 14 ([Fu18]). We have

$$
\begin{equation*}
\Phi_{\mathrm{AT}}=\left(\mathcal{P} \exp \int_{\mathrm{RC}}^{\alpha_{0}}\left(l_{\widehat{\omega}}+D_{\widehat{\omega}}\right)\right)(1) \in \mathbb{C}\langle\langle A, B\rangle\rangle . \tag{5}
\end{equation*}
$$

Here $l_{\widehat{\omega}}$ is the left multiplication by $\widehat{\omega}$ and $D_{\widehat{\omega}}$ is given by

$$
D_{\widehat{\omega}}:=\operatorname{der}(0, \widehat{\omega}) \in \operatorname{tder}_{2} \widehat{\otimes} \Omega_{\mathrm{PA}}^{1}\left(\bar{C}_{2,0}\right)
$$

with

$$
\begin{equation*}
\widehat{\omega}:=\sum_{n \geqslant 1} \sum_{\Gamma \in \operatorname{LieGra}_{n, 2}^{\mathrm{geom}}} \widehat{\Gamma}(A, B) \cdot \omega_{\Gamma} \quad \text { and } \quad \widehat{\omega}_{\Gamma}:=\omega_{R \Gamma}-\omega_{L \Gamma} . \tag{6}
\end{equation*}
$$

and for any one-form $\Omega \in \Omega_{\mathrm{PA}}^{1}\left(\bar{C}_{2,0}\right)$ we define

$$
\begin{aligned}
& \mathcal{P} \exp \int_{\mathrm{RC}}^{\alpha_{0}} \Omega:=\mathrm{id}+\int_{\mathrm{RC}}^{\alpha_{0}} \Omega+\int_{\mathrm{RC}}^{\alpha_{0}} \Omega \cdot \Omega+\cdots \\
& \quad:=\mathrm{id}+\int_{0<s_{1}<1} \ell^{*} \Omega\left(s_{1}\right)+\int_{0<s_{1}<s_{2}<1} \ell^{*} \Omega\left(s_{2}\right) \wedge \ell^{*} \Omega\left(s_{1}\right)+\cdots .
\end{aligned}
$$

with the straight path ℓ from RC to α_{0} in Figure 5.

[^2]This theorem enables us to calculate explicitly all the coefficients of the AT-associator Φ_{AT} as rational linear combinations of iterated integrals of weight forms of Lie graphs (see [Fu18] for explicit computations in depth 1 and 2).

As is explained in [Ha] that multiple zeta values, the real numbers defined by the following power series

$$
\zeta\left(k_{1}, \ldots, k_{m}\right):=\sum_{0<n_{1}<\cdots<n_{m}} \frac{1}{n_{1}^{k_{1}} \cdots n_{m}^{k_{m}}}
$$

with $k_{1}, \ldots, k_{m} \in \mathbb{N}$ and $k_{m}>1$ (the condition to be convergent), appear as coefficients of the KZ-associator Φ_{KZ}. Particularly its coefficient $\left(\Phi_{\mathrm{KZ}} \mid A^{k_{m}-1} B \cdots A^{k_{1}-1} B\right)$ of the monominal $A^{k_{m}-1} B \cdots A^{k_{1}-1} B$ is given by

$$
\left(\Phi_{\mathrm{KZ}} \mid A^{k_{m}-1} B \cdots A^{k_{1}-1} B\right)=(-1)^{m} \zeta\left(k_{1}, \ldots, k_{m}\right)
$$

(cf. [Fu03, LM96b]).
Alm introduced the following AT-analogue of multiple zeta values:
Definition 15 ([Alm]). For $k_{1}, \ldots, k_{m} \in \mathbb{N}$, we define the AT-analogue of multiple zeta values by

$$
\zeta_{\mathrm{AT}}\left(k_{1}, \ldots, k_{m}\right):=(-1)^{m}\left(\Phi_{\mathrm{AT}} \mid A^{k_{m}-1} B \cdots A^{k_{1}-1} B\right) \in \mathbb{R}
$$

It was shown in [Alm] that

$$
\zeta_{\mathrm{AT}}(n)=-\frac{B_{n}}{2(n!)}
$$

whence in particular it is 0 for all odd n. M. Felder [Fe] calculated

$$
\zeta_{\mathrm{AT}}(5,3)=\frac{2048 \zeta(3,5)-6293 \zeta(3) \zeta(5)}{524288 \pi^{8}}
$$

It is a challenging problem to present closed formulae describing all $\zeta_{\mathrm{AT}}\left(k_{1}, \ldots, k_{m}\right)$ for general indices $\left(k_{1}, \ldots, k_{m}\right)$ in terms of multiple zeta values.

References

[AT10] Alekseev, A. and Torossian, C., Kontsevich deformation quantization and flat connections, Comm. Math. Phys. 300 (2010), no. 1, 47-64.
[AT12] Alekseev, A. and Torossian, C., The Kashiwara-Vergne conjecture and Drinfeld's associators, Ann. of Math. (2) 175 (2012), no. 2, 415-463.
[Alm] Alm, J., Universal algebraic structures on polyvector fields, PhD thesis, Stockholm Univ, 2014.
[B95] Bar-Natan, D.; On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423-472.
[B97] Bar-Natan, D.; Non-associative tangles, Geometric topology (Athens, GA, 1993), 139-183, AMAPIP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997.
[BD] Bar-Natan, D. and Dancso, Z.; Pentagon and hexagon equations following Furusho, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1243-1250.
[Ca] Cartier, P.; Construction combinatoire des invariants de VassilievKontsevich des nœuds, C. R. Acad. Sci. Paris Ser. I Math. 316 (1993), no. 11, 1205-1210.
[CKTB] Cattaneo, A., Bernhard, B., Torossian, C. and Bruguières, A., Déformation, quantification, théorie de Lie, Panoramas et Synthèses, 20. Société Mathématique de France, Paris, 2005.
[Dr] Drinfeld, V. G., On quasitriangular quasi-Hopf algebras and a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (1991), no. 4, 829-860.
[EK] Etingof, P. and Kazhdan, D.; Quantization of Lie bialgebras. II, Selecta Math. 4 (1998), no. 2, 213-231.
[FeW] Felder, G. and Willwacher, T., On the (ir)rationality of Kontsevich weights, Int. Math. Res. Not. IMRN 2010, no. 4, 701-716.
[Fe] Felder, M., On the irrationality of certain coefficients of the AlekseevTorossian associator, J. Lie Theory 27 (2017), no. 2, 501-528.
[Fu03] Furusho, H., The multiple zeta value algebra and the stable derivation algebra, Publ. Res. Inst. Math. Sci. Vol 39. no 4. (2003). 695-720.
[Fu10] Furusho, H., Pentagon and hexagon equations, Ann. of Math. (2) 171 (2010), no. 1, 545-556.
[Fu14] Furusho, H., Around associators, Automorphic forms and Galois representations, 2, London Math.Soc. Lecture Note Ser. 415 (2014), 105-117, Cambridge Univ. Press, Cambridge, which is a revised version of 'Four groups related to associators', the report on Mathematische Arbeitstagung. 2011.
[Fu16] Knots and Grothendieck-Teichmuller group (Japanese), Math for Industry Lecture note series, Vol 68, Kyushu. Univ.
[Fu18] Furusho, H., On the coefficients of the Alekseev Torossian associator, Journal of Algebra 506 (2018), 364-378.
[Ha] Harada, R., KZ-equation and KZ-associator (Japanese), in this volume.
[HLTV] Hardt, R., Lambrechts, P., Turchin, V. and Volić, I., Real homotopy theory of semi-algebraic sets, Algebr. Geom. Topol. 11 (2011), no. 5, 2477-2545.
[JS] Joyal, A. and Street, R.; Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78.
[KaT] Kassel, C. and Turaev, V.; Chord diagram invariants of tangles and graphs, Duke Math. J. 92 (1998), no. 3, 497-552.
[Kat] Kathotia, V.; Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula, Internat. J. Math. 11 (2000), no. 4, 523-551.
[K93] Kontsevich, M.; Vassiliev's knot invariants, I. M. Gel'fand Seminar, 137150, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993.
[K03] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216.
[KS] Kontsevich, M. and Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), 255-307, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000.
[LV] Lambrechts, P. and Volić, I., Formality of the little N-disks operad, Mem. Amer. Math. Soc. 230 (2014), no. 1079.
[LM96a] Le, T.Q.T. and Murakami, J.; The universal Vassiliev-Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996), no. 1, 41-64.
[LM96b] Le, T.Q.T. and Murakami, J., Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J. 142 (1996), 39-65.
[P] Piunikhin, S.; Combinatorial expression for universal Vassiliev link invariant, Comm. Math. Phys. 168 (1995), no. 1, 1-22.
[RW] Rossi, C. and Willwacher, T., P. Etingof's conjecture about Drinfeld associators, preprint arXiv:1404.2047.
[SW] Ševera, P. and Willwacher, T., Equivalence of formalities of the little discs operad, Duke Math. J. 160 (2011), no. 1, 175-206.
[Si] Sinha, Dev P., Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004), no. 3, 391-428.
[Ta] Tamarkin, D. E.; Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1-2, 65-72.
[To] Torossian, C., Sur la conjecture combinatoire de Kashiwara-Vergne, J. Lie Theory 12 (2002), no. 2, 597-616.
[W] Willwacher, T., M. Kontsevich's graph complex and the GrothendieckTeichmüller Lie algebra, Invent. Math. 200 (2015), no. 3, 671-760.

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, 464-8602, Japan

Email address: furusho@math.nagoya-u.ac.jp

[^0]: ${ }^{1}$ Here we follow the conventions of Bruguières ([CKTB]).

[^1]: ${ }^{2}$ 'PA' stands for piecewise-algebraic (cf. [KS, HLTV, LV]).

[^2]: ${ }^{3}$ It means $\Phi_{\mathrm{AT}}(-A,-B)=\Phi_{\mathrm{AT}}(A, B)$, from which it follows that $\Phi_{\mathrm{KZ}} \neq \Phi_{\mathrm{AT}}$ because Φ_{KZ} is not even.

