PROBLEMS ON PROFINITE KNOTS

HIDEKAZU FURUSHO

Let \mathcal{K} be the set of isotopy classes of oriented (topological) knots, which forms a commutative monoid by the connected sum. Let $\widehat{\mathcal{K}}$ be the monoid of profinite knots constructed in [F]. The set $\widehat{\mathcal{K}}$ forms a topological commatative monoid by the connected sum and there is a natural monoid homomorphism

$$h: \mathcal{K} \to \widehat{\mathcal{K}}$$

whose image is dense in $\widehat{\mathcal{K}}$, as is shown in [F].

Problem 1. Is the map h injective?

If it is non-injective, then the Kontsevich knot invariant fails to be perfect.

As for Artin braid group B_n $(n \ge 2)$, it is known that B_n is residually finite, namely, the natural map

$$B_n \to \widehat{B_n}$$

is injective.

Problem 2. Is there any Alexander-Markov-like theorem for profinite links?

One can find several proofs of Alexander-Markov's theorem for topological links ([Bi, T, V, Y] etc). However they look heavily based on a certain finiteness property, which we may not expect the validity for profinite links.

Let Frac $\widehat{\mathcal{K}}$ be the fractional group of $\widehat{\mathcal{K}}$, which forms a topological commutative group. The action of the absolute Galois group $G_{\mathbb{Q}} := \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ of rationals \mathbb{Q} on Frac $\widehat{\mathcal{K}}$ was constructed in [F].

Problem 3. Is the $G_{\mathbb{Q}}$ -action on Frac $\widehat{\mathcal{K}}$ faithful?

As for the braid groups, the $G_{\mathbb{Q}}$ -action on $\widehat{B_n}$ is known to be faithful for $n \ge 3$ by Belyi's theorem [Be].

Date: June 15, 2014.

HIDEKAZU FURUSHO

Problem 4. Does there exist any (co)homology theory H_{\star} (or any fundamental group theory π_1^{\star}) and any (pro-)variety X defined over \mathbb{Q} such that $H_{\star}(X_{\overline{\mathbb{Q}}})$ (resp. $\pi_1^{\star}(X_{\overline{\mathbb{Q}}})$) carries a natural $G_{\mathbb{Q}}$ -action and Frak $\widehat{\mathcal{K}}$ is identified with $H_{\star}(X_{\overline{\mathbb{Q}}})$ (resp. $\pi_1^{\star}(X_{\overline{\mathbb{Q}}})$) so that our $G_{\mathbb{Q}}$ -action on Frak $\widehat{\mathcal{K}}$ can be derived from the $G_{\mathbb{Q}}$ -action there?

References

- [Be] Belyĭ, G. V.; Galois extensions of a maximal cyclotomic field, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267-276, 479.
- [Bi] Birman, J. S.; Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974.
- [F] Furusho, H., Galois action on knots I: Action of the absolute Galois group, preprint arXiv:1211.5469.
- [T] Traczyk, P., A new proof of Markov's braid theorem, Knot theory (Warsaw, 1995), 409–419, Banach Center Publ., 42, Polish Acad. Sci., Warsaw, 1998.
- [V] Vogel, P., Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), no. 1, 104-113.
- [Y] Yamada, S., The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), no. 2, 347-356.

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Furo-cho, Nagoya, 464-8602, Japan

E-mail address: furusho@math.nagoya-u.ac.jp

 $\mathbf{2}$