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Abstract. This is a short survey of the paper [F1] where the notion of profinite knots
is introduced and the action of the absolute Galois group of the rational number field
there is constructed.

1. Profinite Braids

We briefly review several known facts on Galois actions on profinite braid groups.
Let Bn (n ⩾ 2) be the Artin braid group Bn with n-strings is the group with generators

σi (1 ⩽ i ⩽ n − 1) subject to two relations σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for

|i − j| > 1. The profinite braid group B̂n means its profinite completion. The following
is one of the basic properties of braid groups (consult [KT], for example).

Lemma 1. The braid group Bn (n ⩾ 2) is residually-finite, that is, the natural map

Bn → B̂n is injective.

The absolute Galois group GQ of the rational number field Q means the profinite group

GQ = Gal(Q/Q) := lim←−Gal(F/Q)

where the limit runs over all finite Galois extension F of Q and Gal(F/Q) means its
Galois group. A geometric continuous GQ-action

ρn : GQ → Aut B̂n.

(n ⩾ 2), associated with the arithmetic Galois action on the profinite fundamental group
of the moduli space of curves with (0, n)-type, is discussed intensively by Drinfeld [D],
Ihara [I], etc.

Proposition 2 ([D, IM]). A pair (λ, f) ∈ Ẑ× × F̂2 can be associated with each σ ∈ GQ
so that the action ρn(σ) (n ⩾ 2) is given by

σ(σi) = f−1
1···i−1,i,i+1σ

λ
i f1···i−1,i,i+1 (2 ⩽ i ⩽ n− 1).

Here the symbol Ẑ is the profinite completion of the ring Z of integers, which is nothing

but the product
∏

p Zp of the ring Zp of p-adic integers (p: a prime). The symbol F̂2 is

the profinite completion of the free group F2. For the symbol f1···i−1,i,i+1, see [F1]. The
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following is one of the basic properties of the Galois action ρn, which is a consequence of
Bely̆ı’s theorem [Be].

Proposition 3. The action ρn is faithful for n ⩾ 3.

The action is extended into the one of the Grothendieck-Teichmüller group ĜT , a
profinite group introduced by Drinfeld [D]. It contains GQ and is closely related to
the philosophy of Teichmüller-Lego posed by Grothendieck in his article ‘Esquisse d’un
programme’ [G].

2. Profinite Knots

This section is a short survey of the paper [F1], where the notion of profinite knots is
introduced and the Galois actions on profinite braids (explained in §1) are developed into
the ones on profinite knots.

Let k, l ⩾ 0. Let ϵ = (ϵ1, . . . , ϵk) and ϵ′ = (ϵ′1, . . . , ϵ
′
l) be sequences (including the empty

sequence ∅) of symbols ↑ and ↓.

Definition 4. The set of fundamental profinite tangles means the disjoint union of the

following three sets A, B̂ and C 1 of symbols:

A :=
{
aϵk,l

∣∣ k, l = 0, 1, 2, . . . , ϵ = (ϵi)
k+l+1
i=1 ∈ {↑, ↓}k × {↷,↶} × {↑, ↓}l

}
,

B̂ :=
{
bϵn

∣∣ bϵn = (bn, ϵ = (ϵi)
n
i=1) ∈ B̂n × {↑, ↓}n, n = 1, 2, 3, 4, . . .

}
,

C :=
{
cϵk,l

∣∣ k, l = 0, 1, 2, . . . , ϵ = (ϵi)
k+l+1
i=1 ∈ {↑, ↓}k × { ↶, ↷} × {↑, ↓}l

}
.

Here all arrows are merely regarded as symbols.

We occasionally depict these fundamental profinite tangles with ignorance of arrows
(which represent orientation of each strings) as the pictures in Figure 1, which we call
their topological pictures.

aϵk,l
k l

bϵn

bn

n

n

cϵk,l
k l

Figure 1. Topological picture of fundamental profinite tangles

For a fundamental profinite tangle γ, its source s(γ) and its target t(γ) are sequences
of ↑ and ↓ defined below:

(1) When γ = aϵk,l, s(γ) is the sequence of ↑ and ↓ replacing ↷ (resp. ↶) by ↑↓
(resp.↓↑) in ϵ and t(γ) is the sequence omitting ↷ and ↶ in ϵ (cf. Figure2).

(2) When γ = bϵn, s(γ) = ϵ and t(γ) is the permutation of ϵ induced by the image of

bϵn of the projection B̂n to the symmetric group Sn (cf. Figure 3).

1A, B and C stand for Annihilations, Braids and Creations respectively.
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↑
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↓ ↓

↑

↑↑

Figure 2. aϵ2,1 with s(aϵ2,1) = ↑↓↑ and t(aϵ2,1) = ↑↓↓↑↑

↑ ↓ ↑

↑↓ ↑

Figure 3. An example of bϵ3 with s(bϵ3) = ϵ = ↓↑↑ and t(bϵ3) = ↑↓↑

(3) When γ = cϵk,l, s(γ) is the set omitting ↶and ↷in ϵ and t(γ) is the set replacing

↶(resp. ↷) by ↓↑ (resp.↑↓) in ϵ.

Definition 5. A profinite (oriented) tangle diagram means a finite consistent 2 sequence
T = {γi}ni=1 of fundamental profinite tangles (which we denote by γn · · · γ2 ·γ1). Its source
and its target are defined by s(T ) := s(γ1) and t(T ) := t(γn). A profinite link diagram
means a profinite tangle T with s(T ) = t(T ) = ∅. A profinite knot diagram is a profinite
link diagram with a single connected component. (The notion of connected components
of profinite tangle diagrams are introduced in [F1].)

Definition 6. For profinite tangles diagram, the moves (T1)-(T6) are defined as follow.

(T1) Trivial braids invariance: for a profinite tangle T with |s(T )| = m (resp. |t(T )| =
n), 3

et(T )
n · T = T = T · es(T )

m .

Here eϵk means the unit in B̂k whose source and targets are both ϵ. Figure 4 depicts the
move.

T

m

n

= T

m

n

= T

m

n

Figure 4. (T1): trivial braids invariance

(T2) Braids composition: for bϵ1n , b
ϵ2
n ∈ B̂ with t(bϵ1n ) = s(bϵ2n ),

bϵ2n · bϵ1n = bϵ3n .

2Here ‘consistent’ means successively composable, that is, s(γi+1) = t(γi) holds for all i = 1, 2, . . . , n−1.
3For a set S, |S| stands for its cardinality.
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Here bϵ3n means the element in B̂ with s(bϵ3n ) = s(bϵ1n ) and t(bϵ3n ) = t(bϵ2n ) which represents

the product b2 · b1 of two braids in B̂n. Figure 5 depicts the move.

n

bϵ1n

bϵ2n

n

= bϵ2n · bϵ1n

n

n

Figure 5. (T2): braids composition

(T3) Independent tangles relation: for profinite tangles T1 and T2 with |s(T1)| = m1,
|t(T1)| = n1, |s(T2)| = m2 and |t(T2)| = n2,

(et(T1)
n1
⊗ T2) · (T1 ⊗ es(T2)

m2
) = (T1 ⊗ et(T2)

n2
) · (es(T1)

m1
⊗ T2).

For the symbol ⊗ see [F1]. We occasionally denote both hands side of the above equation
simply by T1 ⊗ T2. Figure 6 depicts the move.

m1

T1

n1

T2

m2

n2

=
T1

m1

n1

m2

T2

n2

Figure 6. (T3): independent tangles relation

(T4) Braid-tangle relations: for bϵl ∈ B̂, k with 1 ⩽ k ⩽ l and a profinite tangle T with
|s(T )| = m and |t(T )| = n,

evk,t(T )(b
ϵ
l ) · (e

s1
k−1 ⊗ T ⊗ es2l−k) = (et1k′−1 ⊗ T ⊗ et2l−k′) · ev

k′,s(T )(bϵl ).

For ev, see [F1]. For s(bϵl ) = ϵ = (ϵi)
l
i=1 we put s1 := (ϵi)

k−1
i=1 and s2 := (ϵi)

l
i=k+1. Put

k′ = bϵl (k). Here b
ϵ
l (k) stands for the image of k by the permutation which corresponds to

bϵl by the projection Bl → Sl. For t(b
ϵ
l ) = (ϵ′i)

l
i=1 we put t1 := (ϵ′i)

k′−1
i=1 and t2 := (ϵ′i)

l
i=k′+1.

Figure 7 depicts the move.
(T5) Creation-annihilation relation: for cϵk,l ∈ C and aϵ

′

k+1,l−1 ∈ A with t(cϵk,l) =

s(aϵ
′

k+1,l−1)

aϵ
′

k+1,l−1 · cϵk,l = e
s(cϵk,l)

k+l .

And for cϵk,l ∈ C and aϵ
′

k−1,l+1 ∈ A with t(cϵk,l) = s(aϵ
′

k−1,l+1)

aϵ
′

k−1,l+1 · cϵk,l = e
s(cϵk,l)

k+l .

Figure 8 depicts the move.
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k − 1

T

m l− k

evk,t(T )(b
ϵ
l )

l − 1 + n

= evk
′,s(T )(bϵl )

l − 1 +m

T

k′ − 1 n l− k′

Figure 7. (T4): braid-tangle relation

k l

=

k + l k l

=

k + l

Figure 8. (T5): creation-annihilation relations

(T6) First Reidemeister move: for c ∈ Ẑ 4, cϵk,l ∈ C and σϵ′

k+1 ∈ B̂ which represents

σk+1 ∈ B̂k+l+2 and t(cϵk,l) = s(σϵ′

k+1)

(σϵ′

k+1)
c · cϵk,l = cϵ̄k,l

where ϵ̄ is chosen to be t(ϵ̄) = t((σϵ′

k+1)
c).

For c ∈ Ẑ, aϵk,l ∈ A and σϵ′

k+1 ∈ B̂ which represents σk+1 ∈ B̂k+l+2 and s(aϵk,l) = t(σϵ′

k+1)

aϵk,l · (σϵ′

k+1)
c = aϵ̄k,l.

where ϵ̄ is chosen to be s(ϵ̄) = s((σϵ′

k+1)
c). Figure 9 depicts the moves.

k

c

l

=

k l
,

k

c

l

=

k l

Figure 9. (T6): first Reidemeister move

We note that in the first (resp. second) equation cϵk,l = cϵ̄k,l (resp. aϵk,l = aϵ̄k,l) if and
only if c ≡ 0 (mod 2).

These moves (T1)-(T6) are profinite analogues of the so-called Turaev moves [Tu] for
oriented tangles (consult also [CDM, K, O]). Our above formulation is stimulated by the
moves (R1)-(R11) presented in [Ba].

Definition 7. Two profinite (oriented) tangle diagrams T1 and T2 are isotopic, denoted
T1 = T2 by abuse of notation, if they are related by a finite number of the moves (T1)-
(T6). An (oriented) profinite tangle stands for each isotopy class. We denote the set of

4It should be worthy to emphasize that c is assumed to be not in Z but in Ẑ.
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profinite tangles by T̂ . Similarly a profinite knot stands for each isotopy class of profinite

knot diagrams. The set K̂ of profinite knots is the subset of T̂ consisting of profinite
knots.

We notice that the number of connected components is an isotopic invariant of profinite

tangles. The profinite topology on B̂n (n = 1, 2, . . . ) and the discrete topology on A and

on C yield a topology on the space of profinite tangles. Hence T̂ carries a structure of
topological space (cf. [F1]).

Theorem 8 ([F1]). (1). Let T be the set of isotopy classes of (topological) oriented
tangles. There is a natural map

h : T → T̂ ,
which we call the profinite realization map.

(2). The above profinite realization map induces the map

h : K → K̂.

Here K stands for the set of isotopy classes of topological oriented knots.

By abuse of notation, we occasionally denote the image h(K) of K ∈ K by the same
symbol K. As a knot analogue of the residually-finiteness (Lemma 1) of the braid group
Bn, we raise the conjecture below.

Conjecture 9. The map h : K → K̂ is injective.

Remark 10. If the above conjecture, i.e. the injectivity of h, failed, then the Kontse-
vich invariant [Ko] would fail to be a perfect invariant (cf. [F1]). We remind that the
Kontsevich invariant is an invariant of oriented knots which is conjectured to be a perfect
invariant, i.e. an invariant detecting all oriented knots.

The notion of connected sum for knots can be extended into profinite knots.

Theorem 11 ([F1]). For any two profinite knot diagrams K1 = αm · · ·α1 and K2 =
βn · · · β1 with (αm, α1) = (↶, ↶) and (βn, β1) = (↶, ↶), their connected sum means the
profinite tangle diagram defined by

(2.1) K1♯K2 := αm · · ·α2 · βn−1 · · · β1.

Then
(1). the above connected sum induces a well-defined product

♯ : K̂ × K̂ → K̂.

(2). By the product ♯, the set K̂ forms a topological (that is, the map ♯ is continuous
with respect to the topology given above) commutative associative monoid, whose unit is
given by the oriented circle :=↶ · ↶.

(3). The profinite realization map h : K → K̂ forms a monoid homomorphism whose

image is dense in K̂.
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For the proofs of Theorem 8 and 11, see [F1].
In knot theory, the so-called Alexander-Markov’s theorem is fundamental on construc-

tions of knot invariants. The theorem is to translate knots and links into purely algebraic
objects:

Theorem 12 (Alexander-Markov’s theorem). There is a one-to-one correspondence

L ←→ ⊔nBn/ ∼M

between the set L of isotopy classes of oriented links and the (disjoint) union ⊔nBn of
braids groups modulo the equivalence ∼M given by the following Markov moves

(M1). b1 · b2 ∼M b2 · b1 (b1, b2 ∈ Bn), (M2). b ∈ Bn ∼M bσ±1
n ∈ Bn+1 (b ∈ Bn)

For more on the theorem, consult [CDM, O] for example. The question below is to ask
a validity of profinite analogue of Alexander-Markov’s theorem.

Problem 13. Is there a ‘profinite analogue’ of the Alexander-Markov’s theorem which

holds for the set L̂ of isotopy classes of profinite links ?

There are several proofs of Alexander-Markov’s theorem for topological links ([Bi, Tr,
V, Y] etc). But they look heavily based on a certain finiteness property, which we (at
least the author) may not expect the validity for profinite links.

Definition 14. The fractional group of profinite knots FracK̂ is defined to be the group

of fraction of the monoid K̂, i.e., the quotient space of K̂2 by the equivalent relations

(r, s) ≈ (r′, s′) if r♯s′♯t ∼ r′♯s♯t for some profinite knot t, i.e. r♯s′♯t = r′♯s♯t holds in K̂.
Occasionally we denote the equivalent class [(r, s)] by r

s
.

We encode FracK̂ with the quotient topology of K̂2. In [F1] it is shown that the product

♯ yields a topological commutative non-trivial group structure on FracK̂.

Problem 15. Is FracK̂ a profinite group?

By [RZ], to show that FracK̂ is a profinite group, we must show that it is compact,
Hausdorff and totally-disconnected. The author is not aware of any one of their validities.

Definition 16. Let (r, s) be a pair of profinite knot diagrams with r = γ1,m · · · γ1,2 · γ1,1
and s = γ2,n · · · γ2,2 · γ2,1 (γi,j: profinite fundamental tangle). Let σ ∈ GQ and (λ, f) be
its associated pair (cf. Proposition 2). Define its action by

(2.2) σ
(r
s

)
:=
{σ(γ1,m) · · ·σ(γ1,2) · σ(γ1,1)}♯(Λf )

♯α(s)

{σ(γ2,n) · · ·σ(γ2,2) · σ(γ2,1)}♯(Λf )♯α(r)
∈ FracK̂.

Here σ(γi,j) and Λf are defined in FracK̂ as follows:

(1) When γi,j = aϵk,l, we define

σ(γi,j) := γi,j · f
s(γi,j)
1···k,k+1,k+2.

Figure 10 depicts the action. Here the thickened black band stands for the trivial
braid ek with k-strings. Consult [F1] in more precise.
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f ( , )

k l

Figure 10. σ(aϵk,l)

(2) When γi,j = bϵn = (bn, ϵ) ∈ B̂, we define

σ(γi,j) := (σ(bn), ϵ)

which is nothing but the image of bn ∈ B̂n by the GQ-action on B̂n explained in
Proposition 2.

(3) When γi,j = cϵk,l, we define

σ(γi,j) := f
−1,t(γi,j)
1···k,k+1,k+2 · γi,j.

Figure 11 depicts the action.

f ( , )−1

k l

Figure 11. σ(cϵk,l)

The symbol Λf represents the profinite tangle

a↶0,0 · a
↶↓↑
0,2 · (e

↓
1 ⊗ f) · c↓

↷↑
1,1 · c

↶

0,0

(cf. Figure 12).

↓
f

↑

↑

Figure 12. Λf

The symbol α(r) (resp. α(s)) means the number of annihilations; the cardinality of the
set {j|γi,j ∈ A} for i = 1 (resp. i = 2) and (Λf )

♯α(r) (resp. (Λf )
♯α(s)) means the α(r)-th
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(resp. the α(s)-th) power of Λf with respect to ♯. Particularly we have

σ( )♯Λf = ∈ FracK̂

Our main theorem is that the equation (2.2) yields a well-defined GQ-action on FracK̂

ρ0 : GQ → Aut FracK̂.

Theorem 17 ([F1]). (1). σ( r1
s1
) = σ( r2

s2
) ∈ FracK̂ if r1 ∼ r2 and s1 ∼ s2, i.e. if r1 = r2

and s1 = s2 in K̂.
(2). σ( r1

s1
) = σ( r2

s2
) ∈ FracK̂ if (r1, s1) ≈ (r2, s2), i.e. if

r1
s1

= r2
s2

in FracK̂.
(3). σ1(σ2(x)) = (σ1 ◦ σ2)(x) for any σ1, σ2 ∈ GQ and x ∈ FracK̂.

Furthermore GK̂ forms a topological GQ-module. Namely,
(4). the action is compatible with the group structure, i.e.

σ(e) = e, σ(x♯y) = σ(x)♯σ(y), σ(x−1) = σ(x)−1

for any σ ∈ GQ and x, y ∈ FracK̂.
(5). the action is continuous.

For a proof of the theorem, consult [F1]. Particularly when σ ∈ GQ is equal to the

complex conjugation ς0, it corresponds to (λ, f) = (−1, 1) and its action on B̂n is given
by σi 7→ σ−1

i (1 ⩽ i ⩽ n− 1). Therefore

Example 18. The action of the complex conjugation ς0 on FracK̂ is given by

ρ0(ς0) (K) = K

for each K ∈ K. Here K means the mirror image of K.

As a analogue of Bely̆ı’s theorem (Proposition 3), the following problem is posed.

Problem 19. Is our action ρ0 also faithful?

If it turns that it is not faithful, then in that case detecting the corresponding kernel
field, which is a Galois extension of Q, might be also an interesting problem.

Remark 20. (1). Actually our GQ-action on profinite knots are extended to a ĜT -action
not only on profinite knots but also on profinite framed knots (cf. [F1]).

(2). In the subsequent paper [F2], the notion of proalgebraic knots, which is nothing
but knots completed by a filtration à la Vassiliev, is introduced and the action of the
motivic Galois group there is discussed.
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