
ASSOCIATORS AND KONTSEVICH’S EYE

HIDEKAZU FURUSHO

Abstract. This is a report on Drinfeld’s associators and Kontse-
vich’s eye which is based on my talk at Algebraic Lie Theory and
Representation Theory (ALTReT) 2018.
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1. Drinfeld’s associator

The notion of associators was introduced by Drinfeld in [Dr]. They
describe monodromies of the KZ-equations 1. They are essential for
the construction of quasi-triangular quasi-Hopf quantized universal en-
veloping algebras ([Dr]), for the quantization of Lie-bialgebras (Etingof-
Kazhdan quantization [EK]), for the proof of formality chain operad
of little discs by Tamarkin [Ta] (see also Ševera and Willwacher [SW]),
the formal solution of Kashiwara-Vergne conjecture by Alekseev and
Torossian [AT12] and also for the combinatorial reconstruction of the
universal Vassiliev knot invariant (the Kontsevich invariant [K93, B95])
by Bar-Natan [B97], Cartier [Ca], Kassel and Turaev [KaT], Le and
Murakami [LM96a] and Piunikhin [P] (for some of these related topics,
consult [Fu14, Fu16]).

Let us fix notations: Let k be a field of characteristic 0 and k̄ be
its algebraic closure. Denote by Û f2 = k⟨⟨A,B⟩⟩ the non-commutative
formal power series ring defined as the completion (with respect to
degree) of the universal enveloping algebra of the free Lie algebra f2

Date: September 22, 2018.
1KZ stands for Knizhnik and Zamolodchikov.
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over k with two variables A and B. An element φ = φ(A,B) of Û f2 is
called group-like 2 if it satisfies

(1.1) ∆(φ) = φ⊗ φ and φ(0, 0) = 1

where ∆ : Û f2 → Û f2⊗̂Û f2 is given by ∆(A) = A ⊗ 1 + 1 ⊗ A and

∆(B) = B⊗ 1+1⊗B. For any k-algebra homomorphism ι : Û f2 → S,
the image ι(φ) ∈ S is denoted by φ(ι(A), ι(B)).

Denote by Ûa3 (resp. Ûa4) the completion of the universal envelop-
ing algebra of the pure braid Lie algebra a3 (resp. a4) over k with 3
(resp. 4) strings, which is generated by tij (1 ⩽ i, j ⩽ 3 (resp. 4)) with
defining relations

tii = 0, tij = tji, [tij, tik + tjk] = 0 (i,j,k: all distinct)

and [tij, tkl] = 0 (i,j,k,l: all distinct).

Definition 1.1 ([Dr]). A pair (µ, φ) with a non-zero element µ in k

and a group-like series φ = φ(A,B) ∈ Û f2 is called an associator if it
satisfies one pentagon equation
(1.2)
φ(t12, t23+ t24)φ(t13+ t23, t34) = φ(t23, t34)φ(t12+ t13, t24+ t34)φ(t12, t23)

in Ûa4 and two hexagon equations
(1.3)

exp{µ(t13 + t23)

2
} = φ(t13, t12) exp{

µt13
2

}φ(t13, t23)−1 exp{µt23
2

}φ(t12, t23),

(1.4)

exp{µ(t12 + t13)

2
} = φ(t23, t13)

−1 exp{µt13
2

}φ(t12, t13) exp{
µt12
2

}φ(t12, t23)−1

in Ûa3.

Drinfeld [Dr] proved that such a pair always exists for any field k of
characteristic 0. The equations (1.2)–(1.4) reflect the three axioms of
braided monoidal categories introduced by Joyal and Street [JS].

Actually, the two hexagon equations are a consequence of the one
pentagon equation:

Theorem 1.2 ([Fu10]). Let φ = φ(A,B) be a group-like element of

Û f2. Suppose that φ satisfies the pentagon equation (1.2). Then there
always exists µ ∈ k̄ (unique up to signature) such that the pair (µ, φ)
satisfies two hexagon equations (1.3) and (1.4).

2It is equivalent to φ ∈ exp f̂2.
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We note that several different proofs of the above theorem were ob-
tained (see [AT12, BD, W]).

A well-known example of associators is the KZ-associator:

Example 1.3. The KZ-associator (aka. Drinfeld associator) ΦKZ =
ΦKZ(A,B) ∈ C⟨⟨A,B⟩⟩ is defined to be the quotient ΦKZ = G1(z)

−1G0(z)
where G0 and G1 are the solutions of the formal KZ-equation, which
is the following differential equation for multi-valued functions G(z) of
C\{0, 1} valued on C⟨⟨A,B⟩⟩
(1.5) dG(z) = ωKZ ·G(z)

with

ωKZ :=
dz

z
A+

dz

z − 1
B

such that G0(z) ≈ zA when z → 0 and G1(z) ≈ (1 − z)B when z → 1
(cf.[Dr]). It is shown in [Dr] that the pair (2π

√
−1, ΦKZ) forms an

associator for k = C. Namely ΦKZ satisfies (1.1)∼(1.4) with µ =
2π

√
−1.

Remark 1.4. (i). The KZ-associator is expressed as follows:

ΦKZ(X0, X1) = 1 +
∑

m,k1,...,km∈N
km>1

(−1)mζ(k1, · · · , km)Akm−1B · · ·Ak1−1B

+ (regularized terms).

Here ζ(k1, · · · , km) is the multiple zeta value (MZV in short), the real
number defined by the following power series

(1.6) ζ(k1, · · · , km) :=
∑

0<n1<···<nm

1

nk1
1 · · ·nkm

m

for m, k1,. . . , km ∈ N(= Z>0) with km > 1 (its convergent condition).
All of the coefficients of ΦKZ (including its regularized terms) are ex-
plicitly calculated in terms of MZV’s in [Fu03] Proposition 3.2.3 by
Le-Murakami’s method in [LM96b] Theorem A.8.

(ii). Since all of the coefficients of ΦKZ are described by MZV’s,
the equations (1.1)∼(1.4) for (µ, φ) = (2π

√
−1, ΦKZ) yield algebraic

relations among them, which are called associator relations. It is ex-
pected that the associator relations might produce all algebraic rela-
tions among MZV’s.

In Definition 3.3, we will see another example of associators, the
AT-associator ΦAT, which was constructed by Alekseev and Torossian
[AT10] by using a parallel transport of an analog (3.2) of the KZ-
equation.
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2. Kontsevich’s eye

We will recall the compactified configuration spaces and weights of
Lie graphs [K03].

Let n ⩾ 1. For a topological space X, we define Confn(X) :=
{(x1, . . . , xn)

∣∣ xi ̸= xj (i ̸= j)}. The group Aff+ := {x 7→ ax + b
∣∣

a ∈ R×
+, b ∈ C} acts on Confn(C) diagonally by rescallings and parallel

translations. We denote the quotient by

Cn := Confn(C)/Aff+

for n ⩾ 2, which is a connected oriented smooth manifold with dimen-
sion 2n− 3. E.g.

• C2 ≃ S1.
• C3 ≃ S1 × (P1(C) \ {0, 1,∞}).

For a finite set I with |I| = n, we put CI = Cn. For I ′ ⊂ I with
|I ′| > 1, we have the pull-back map CI ↠ CI′ .

Put Confn,m(H,R) := Confn(H) × Confm(R) with the coordinate
(z1, . . . , zn, x1, . . . , xm), where H is the upper half plane. The group
AffR

+ := {x 7→ ax + b
∣∣ a ∈ R×

+, b ∈ R} acts there diagonally and we
denote the quotient by

Cn,m := Confn,m(H,R)/AffR
+

for n,m ⩾ 0 with 2n+m ⩾ 2. It is an oriented smooth manifold with
dimension 2n+m− 2 and with m! connected components. E.g.

• C0,2 ≃ {±1}, C+
0,2 = {+1}, C−

0,2 := {−1}.
• C1,1 ≃ {e

√
−1πθ

∣∣ 0 < θ < 1}.
• C2,0 ≃ H− {

√
−1}.

For a finite set I and J with |I| = n and |J | = m, we put CI,J = Cn,m.
Then for I ′ ⊂ I and J ′ ⊂ J , we have the pull-back map CI,J ↠ CI′,J ′ .

Below we recall 3 Kontsevich’s [K03] compactifications Cn and Cn,m

of Cn and Cn,m à la Fulton-MacPherson (in more detail, consult [Si]) :

For a finite set I with |I| = n, we put C̃I := C̃n := {(z1, . . . , zn) ∈
Cn |

∑n
i=1 zi = 0} ∩ S2n−1. By identifying it with Cn–diag/Aff+

(diag = {(z, . . . , z) | z ∈ C}), we obtain an embedding CI ↪→ C̃I .
The compactification CI = Cn is a compact topological manifold with
corners which is defined to be the closure of the image of the asso-
ciated embedding Φ : CI ↪→

∏
J⊂I,1<|J | C̃J . While by the embed-

ding Confn,m(H,R) ↪→ Conf2n+m(C) sending (z1, . . . , zn, x1, . . . , xm) 7→
(z1, . . . , zn, z̄1, . . . , z̄n, x1, . . . , xm), we have an embedding Cn,m ↪→ C2n+m.
By combining it with Φ, we obtain an embedding Cn,m ↪→ C2n+m. The

3Here we follow the conventions of Bruguières ([CKTB]).
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compactification Cn,m is a compact topological manifold with corners
which is defined to be the closure of the embedding.

They are functorial with respect to the inclusions of two finite sets,
i.e. I1 ⊂ I2 and J1 ⊂ J2 with ♯(Ik) = nk and ♯(Jk) = mk (k =
1, 2) yield a natural map Cn2,m2 → Cn1,m1 . The stratification of his
compactification has a very nice description in terms of trees in [K03]
(also refer [CKTB]). E.g.

• C0,2 = C0,2 ≃ {±1},
• C1,1 = C1,1 ⊔ C0,2 = {e

√
−1πθ

∣∣ 0 ⩽ θ ⩽ 1},
• C2,0 = C2,0 ⊔ C1,1 ⊔ C1,1 ⊔ C2 ⊔ C0,2.

The C2,0 is called Kontsevich’s eye and its each component bears a spe-
cial name as is indicated in Figure 2.1. The upper (resp. lower) eyelid

upper eyelid C1,1

lower eyelid C1,1

iris C2

RC (right corner) C+
0,2

LC (left corner) C−
0,2

C2,0

Figure 2.1. Kontsevich’s eye C2,0

corresponds to z1 (resp. z2) on the the real line. The iris magnifies
collisions of z1 and z2 on H. LC (resp. RC) which stands for the left
(resp. right) corner is the configuration of z1 > z2 (resp. z1 < z2) on
the real line.

The angle map ϕ : C2,0 → R/Z is the map induced from the map
Conf2(H) → R/Z sending

(2.1) ϕ : (z1, z2) 7→
1

2π
arg

(
z2 − z1
z2 − z̄1

)
.

We note that ϕ is identically zero on the upper eyelid but is not on the
lower eyelid.
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Next we will recall the notion of Lie graphs and their weight functions
and 1-forms.

Definition 2.1. Let n ⩾ 1. A Lie graph Γ of type (n, 2) is a graph con-

sisting of two finite sets, the set of vertices V (Γ) := { 1 , 2 , 1 , 2 , . . . , n }
and the set of edges E(Γ) ⊂ V (Γ) × V (Γ). The points 1 and 2 are

called as the ground points, while the points 1 , 2 , . . . , n are called

as the air points. We equip V (Γ) with the total order 1 < 2 < 1 <

2 < · · · < n .
For each e ∈ E(Γ), under the inclusion E(Γ) ⊂ V (Γ)×V (Γ), we call

the corresponding first (resp. second) component s(e) (resp. t(e)) as
the source (resp. the target) of e and denote as e = (s(e), t(e)). We
equip E(Γ) with the lexicographic order induced from that of V (Γ).
Both V (Γ) and E(Γ) are subject to the following conditions:

(1) An air point fires two edges: That means there always exist two

edges with the source i for each i = 1, . . . , n.
(2) An air point is shot by one edge at most: That means there

exists at most one edge with its target i for each i = 1, . . . , n.
(3) A ground point never fire edges: That means there is no edge

with its source on ground points.
(4) The graph Γ becomes a rooted trivalent tree after we cut off

small neighborhoods of ground points: That means that the
graph of Γ admits a unique vertex (called the root) shoot by
no edges and it gives a rooted trivalent trees if we regard the
vertex as a root and distinguish all targets of edges firing ground
points.

Let Γ be a Lie graph of type (n, 2). We define a Lie monomial

Γ(A,B) ∈ f̂2 of degree n+1 to be the associated element with the root

by the following procedure: With 1 and 2 , we assign A and B ∈ f̂2
respectively. With each internal vertex v firing two edges e1 = (v, w1)

and e2 = (v, w2) such that e1 < e2, we assign [Γ1,Γ2] ∈ f̂2 where Γ1

and Γ2 ∈ f̂2 are the corresponding Lie monomials with the vertices w1

and w2 respectively. Recursively we may assign Lie elements with all
vertices of Γ.

E.g. Figure 2.2 is an example of Lie graph of type (3, 2). Its root is

3 . The associated Lie elements of the vertices 1 , 2 , 1 , 2 , 3 are
A, B, [A,B], [B, [A,B]], [B, [B, [A,B]]] respectively.

Each e ∈ E(Γ) determines a subset {s(e), t(e)} ⊂ V (Γ) with |V (Γ)| =
n + 2 which yields a pull-back pe : Cn+2,0 → C2,0. By composing it
with the angle map (2.1), we get a map ϕe : Cn+2,0 → R/Z. The
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1 2

1
2

3

Figure 2.2. Γ(A,B) = [B, [B, [A,B]]]

PA4 2n-forms ΩΓ on Cn+2,0 (which is 2n-dimensional compact space)
associated with Γ is given by the ordered exterior product

ΩΓ := ∧e∈E(Γ)dϕe ∈ Ω2n
PA(Cn+2,0).

Here Ω2n
PA(Cn+2,0) means the space of PA 2n-forms of Cn+2,0

Definition 2.2. (i). Put π : Cn+2,0 → C2,0 to be the above projection

induced from the inclusion { 1 , 2 } ⊂ { 1 , 2 , 1 , 2 , . . . , n }. The

weight function (see [To]) of Γ is the smooth function wΓ : C2,0 → C
defined by wΓ := π∗(ΩΓ) where π∗ is the push-forward (the integration
along the fiber of the projection π, cf. [HLTV]), that is, the function
which assigns ξ ∈ C2,0 with

wΓ(ξ) =

∫
π−1(ξ)

ΩΓ ∈ C.

(ii). We denote LΓ (resp. RΓ) to be a graph obtained from Γ by

adding one more edge eL from 1 (resp. eR from 2 ) to the root of Γ.
The regular (2n+ 1)-form ΩLΓ (resp. ΩRΓ) on Cn+2,0 is defined to be

ΩLΓ := dϕeL ∧ ΩΓ (resp. ΩRΓ := dϕeR ∧ ΩΓ)

in Ω2n
PA(Cn+2,0). The one-forms ωLΓ and ωRΓ, which we call the weight

forms of Γ here, are the PA one-forms of C2,0 respectively defined by

ωLΓ := π∗(ΩLΓ) and ωRΓ := π∗(ΩRΓ)

in Ω1
PA(C2,0), i.e. they are one-forms respectively defined by

ωLΓ(ξ) =

∫
π−1(ξ)

ΩLΓ, and ωRΓ(ξ) =

∫
π−1(ξ)

ΩRΓ

where ξ runs over C2,0.

4‘PA’ stands for piecewise-algebraic (cf. [KS, HLTV, LV]).
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Remark 2.3. (i). Particularly the special value wΓ(RC) of the function
wΓ(ξ) at ξ = RC is called the Kontsevich weight of Γ. It appears as
a coefficient of Kontsevich’s formula on deformation quantization in
[K03].

(ii). While its restriction wΓ|C2 to the iris C2 is identically 0 because
ΩΓ|C2 = 0 due to the occurrence of double edges.

3. Alekseev-Torossian’s associator

We will recall the deformation Z(ξ) (ξ ∈ C2,0) of the Campbell-
Baker-Hausdorff series and its associated differential equation. Then
we will see how the AT-associator ΦAT will be constructed from the
differential equation and give a new presentation of ΦAT.

Consider the smooth function Z : C2,0 → f̂2 defined by

ξ ∈ C2,0 7→ Z(ξ) := A+B +
∑
n⩾1

∑
Γ∈LieGrageomn,2

ωΓ(ξ)Γ(A,B) ∈ f̂2.

Here LieGrageomn,2 is the set of geometric (it means non-labeled) Lie
graphs of type (n, 2). We note that both ΩΓ and Γ(A,B) require the
order of E(Γ) however their product ΩΓ·Γ(A,B) does not (cf. [CKTB]).

Remark 3.1. (i). It is obtained by Kathotia [Kat] that Z(RC) is equal
to the Campbell-Baker-Hausdorff series CBH(A,B) = log(eAeB).

(ii). While its its restriction Z|C2 to the iris C2 is simply equal to
the addition A+B because we have ΩΓ|C2 = 0 (cf. Remark 2.3).

We may say that Z is a series which deforms CBH(A,B).

Theorem 3.2 ([To]). The series Z(ξ) satisfies the differential equation

(3.1) dZ(ξ) = ωAT · Z(ξ)
with

ωAT := der (ωL, ωR) ∈ tder2⊗̂Ω1
PA(C2,0).

Here tder2 be the Lie algebra consisting of tangential derivations

der(α, β) : f̂2 → f̂2 (α, β ∈ f̂2) such that A 7→ [A,α] and B 7→ [B, β],
and

ωL := B · dϕ+
∑
n⩾1

∑
Γ∈LieGrageomn,2

Γ(A,B) · ωLΓ,

ωR := A · σ∗(dϕ) +
∑
n⩾1

∑
Γ∈LieGrageomn,2

Γ(A,B) · ωRΓ.

The symbol σ stands for the involution of C2,0 caused by the switch of
z1 and z2.
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Related to (3.1), in [AT10] they considered the following differential
equation on C2,0:

(3.2) dg(ξ) = −g(ξ) · ωAT

with g(ξ) ∈ TAut2 := exp tder2, the pro-algebraic subgroup of Aut2
consisting of tangential automorphisms Int(α, β) : f̂2 → f̂2 (α, β ∈
exp f̂2) such that A 7→ α−1Aα and B 7→ β−1Bβ. They denote its
parallel transport (its holonomy) of (3.2) for the straight path from α0

(the position 0 at the iris, see Figure 3.1) to RC by FAT ∈ TAut2.

RCα0

Figure 3.1. Parallel transport

Definition 3.3 ([AT10]). The AT-associator ΦAT is defined to be

(3.3) ΦAT := F 1,23
AT ◦ F 2,3

AT ◦ (F 1,2
AT)

−1 ◦ (F 12,3
AT )−1 ∈ TAut3.

Here for any T = Int(α, β) ∈ TAut2, we denote

T 1,2 := Int (α(A,B), β(A,B), 1) , T 2,3 := Int (1, α(B,C), β(B,C)) ,

T 1,23 := Int (α(A,B + C), β(A,B + C), β(A,B + C)) ,

T 12,3 := Int (α(A+B,C), α(A+B,C), β(A+B,C))

in TAut3 := exp tder3 which is similarly defined to be the group of

tangential automorphisms of the completed free Lie algebra f̂3 with
variables A, B and C.

We note that there is a Lie algebra inclusion f̂2 ↪→ tder3 sending

(3.4) A 7→ t12 := der(B,A, 0) and B 7→ t23 := der(0, C,B)

which induces an inclusion exp f̂2 ↪→ TAut3.

Theorem 3.4 ([AT12, SW]). The AT-assocciator ΦAT forms an as-

sociator. Namely it belongs to exp f̂2 (⊂ C⟨⟨A,B⟩⟩) and satisfies the
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equations [Dr] (2.12), (2.13) and (5.3). Furthermore it is real (i.e. it
belongs to the real structure R⟨⟨A,B⟩⟩) and even. 5

The following gives a more direct presentation of ΦAT.

Theorem 3.5 ([Fu18]). We have

(3.5) ΦAT =

(
P exp

∫ α0

RC

(lω̂ +Dω̂)

)
(1) ∈ C⟨⟨A,B⟩⟩.

Here lω̂ is the left multiplication by ω̂ and Dω̂ is given by

Dω̂ := der (0, ω̂) ∈ tder2⊗̂Ω1
PA(C2,0)

with

(3.6) ω̂ :=
∑
n⩾1

∑
Γ∈LieGran,2

ω̂Γ · Γ(A,B) and ω̂Γ := ωRΓ − ωLΓ.

and for any one-form Ω ∈ Ω1
PA(C2,0) we define

P exp

∫ α0

RC

Ω := id +

∫ α0

RC

Ω +

∫ α0

RC

Ω · Ω + · · ·

:= id +

∫
0<s1<1

ℓ∗Ω(s1) +

∫
0<s1<s2<1

ℓ∗Ω(s2) ∧ ℓ∗Ω(s1) + · · · .

with the straight path ℓ from RC to α0 in Figure 3.1.

This theorem enables us to calculate explicitly all the coefficients of
the AT-associator ΦAT as rational linear combinations of iterated inte-
grals of weight forms of Lie graphs (see [Fu18] for explicit computations
in depth 1 and 2).
Explicit formulae to describe all the coefficients of the KZ-associator

ΦKZ in terms of multiple zeta values are given in [Fu03, LM96b]. Whereas,
as far as the author knows, any explicit formulae to present all the co-
efficients of ΦAT as linear combinations of multiple zeta values have not
been presented so far, other than the computation

(ΦAT|A2BA4B) =
2048ζ(3, 5)− 6293ζ(3)ζ(5)

524288π8

by M. Felder [Fe].

5It means ΦAT(−A,−B) = ΦAT(A,B), from which it follows that ΦKZ ̸= ΦAT

because ΦKZ is not even.
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